【2019】高中数学第二章平面向量2-1从位移速度力到向量教案_第1页
【2019】高中数学第二章平面向量2-1从位移速度力到向量教案_第2页
免费预览已结束,剩余12页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1 / 102019最新】高中数学第二章平面向量2-1从位移速度力到向量教案整体设计教学分析1.本节是本章的入门课,概念较多,但难度不大 . 位移、速度、力等物理量学生都学过,这 里仅是列出这些物理量让学生感知矢量,为进一步学习向量的概念作铺垫. 由于向量来源于物理,并且兼具“数”和“形”的特点 , 所以它在物理和几何中具有广泛的应用. 可通过几个具体的例子说明它的应用 . 位移、速度、力等是物理中的基本量 , 也是几何研究的重要对象 几何中常用点表示位置 , 研究如何由一点的位置确定另外一点的位置 . 位移简明地表示了点 的位置之间的相对关系 ,它是向量的重要的物理模型 .力是常见的物理量

2、. 重力、浮力、弹力 等都是既有大小又有方向的量 . 物理中还有其他力 , 让学生举出物理学中力的其他一些实例 目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系, 以此更加自然地引入向量概念 , 并建立学习向量的认知基础 .2.在类比数量的抽象过程而引出向量的概念后,为了使学生更好地理解向量概念 , 可采用与数量概念比较的方法 , 引导学生认识年龄、身高、长度、面积、体积、质量等量是“只有大 小, 没有方向的量” , 同时给出“时间、 路程、功是向量吗 ?速度、 加速度是向量吗 ?”的思考 题. 通过这样的比较 , 可以使学生在区分相似概念的过程中更深刻地把握向量概念. 实数与数

3、轴上的点是一一对应的 , 数量常常用数轴上的一个点表示 . 教科书通过类比实数在数轴上的 表示,给出了向量的几何表示用有向线段表示向量.用有向线段表示向量 , 赋予了向量一定的几何意义 . 有向线段使向量的“方向”得到了表示 , 那么向量的大小又该如何表示呢 ?一 个自然的想法是用有向线段的长度来表示 . 从而引出向量的模、零向量及单位向量等概念 为学习向量作了很好的铺垫 .3.数学中 , 引进一个新的量后 , 首先要考虑的是如何规定它的“相等” , 这是讨论这个量的基 础. 如何规定“相等向量”呢 ?由于向量涉及大小和方向 , 因此把“长度相等且方向相同的向 量”规定为相等向量是非常自然的

4、.由向量相等的定义可以知道 , 对于一个向量 , 只要不改变 它的方向和大小 , 就可以任意平行移动 .因此, 用有向线段表示向量时 ,可以任意选取有向线 段的起点 , 这为用向量处理几何问题带来方便 , 并使平面上的向量与向量的坐标得以一一对应. 教学时可结合例题、习题说明这种思想.4. 共线向量和平行向量是研究向量的基础 , 由此可以将一组平行向量平移 ( 不改变大小和方 向)到一条直线上 ,这给问题的研究带来方便 .教学中 ,要使学生体会两个共线向量并不一定 要在一条直线上 ,只要两个向量平行就是共线向量 , 当然, 在同一直线上的向量也是平行向量 要避免向量的平行、共线与平面几何中直线

5、、线段的平行和共线相混淆, 教学中可以通过对具体例子的辨析来正确掌握概念 .三维目标1.通过物理中的位移、 速度、力等矢量, 利用平面向量的实际背景以及研究平面向量的必要 性,理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别 .2. 理解自由向量、相等向量、相反向量、平行向量、零向量等概念,并能判断向量之间的关 系 . 并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3. 在教学过程中, 应充分根据平面向量的两个要素加以研究向量的关系, 揭示向量可以平移 这一特性 .并通过本节学习, 培养学生从数学的角度思考生活中实际问题的习惯. 加强数学的2 / 10应用意识 ,切

6、实做到学以致用 . 用联系、发展的观点观察世界 .重点难点教学重点:理解并掌握向量、零向量、单位向量、向量的模、相等向量、共线向量的概 念,会表示向量教学难点:平行向量、相等向量和共线向量的区别和联系课时安排1 课时教学过程导入新课图 1思路 1.先引导学生阅读本章引言并观察思考章头图,然后提出问题:在同一时刻,老鼠由 A向西北方向的 C 处逃窜,猫在 B 处向正东方向的 D 处追去,猫能否追到老鼠呢(如图 1)?学 生马上得出结论:追不上,猫的速度再快也没用, 因为方向错了 教师适时设问:如何从数学 的角度来揭示这个问题的本质?由此展开新课的探究思路 2.创设实物情境,回忆物理相关知识,让学

7、生思考:两列火车先后从同一站台沿相反 方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?象棋中规定马走“日”,象走“田”,让学生在图上画出马、象走过的路线,从物理知识位移的视角观察思考,并由此展开新课,这也是一个不错的导入选择 .推进新课新知探究 提出问题1回忆初中物理课中,我们学过的“位移” “速度”“力”等物理概念,让学生举出我们日常生活中有关“位移”“速度” “力”的实例 .2“位移” “速度”“力”这些量的共同特征是什么?3“位移”“速度” “力”等量与长度、 面积、质量等量有哪些不同?即数量与矢量的本质区别在哪里?活动:教师指导学生阅读课本,思考讨论课本中的实例所反映的

8、物理量的特征.实例(1)反映的是物理量一一位移:民航每天都有从飞往、广州、重庆、哈尔滨等地的航班,每次飞行 都是民航客机的一次位移由于飞行的距离和方向各不相同,因此,它们是不同的位移;实例(2)反映的也是物理量一一位移:假如学校位于你家东偏北 30方向,距离你家 2 000 m从家到学校,可能有长短不同的几条路无论走哪条路,你的位移都是向东偏北30方向移动了 2 000 m ;实例(3)反映的是物理量 速度:飞机向东北方向飞行了150 km,飞行时间为半小时,飞行速度的大小是300km/h,方向是东北;实例(4)反映的也是物理量速度:某著名运动员投掷标枪时,标枪的初速度的记录资料是:平均出手角

9、度0=43.242。,平均出手速度大小为v = 28.35m/s ;最后两个实例反映的是物理量一一力:起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.当拉力的大小超过重力的大小时,物体即被吊起;汽车爬倾斜角为0的坡路时,汽车的牵引力大小为 F(N),方向倾斜向上,与水平方向成0角.我们身边这样的实例很多, 可让学生充分思考讨论再举出一些位移、速度、力的实例来,如果学生举出的是一些有关长度、面积、质量的例子,效果会更好,这样就有了比较,教师 因势利导,学生更能明了这些量的本质 .例如:物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力越

10、大;被拉长的弹簧的弹力是沿着反拉方向的,被压缩3 / 10的弹簧的弹力是沿着反压方向的,并且在弹性限度内,弹簧拉长或压缩的长度越大,弹力越4 / 10大;物理中的速度与加速度,物理中的动量与冲量等, 这些量的共同特征是既有大小又有方向.如有学生举出我们的身高、运动会上的百米赛跑的跑道长度及场地面积、铅球体积、铅 球质量等实例,教师适时地让学生讨论:这些量显然与以上那些量不同,因为长度、面积等 这些量只有大小而无方向教师与学生一起归纳总结以上实例:位移、速度和力等这些物理量都是既有大小,又有方向的量,在物理中称为“矢量”. 只有大小,没有方向的量,如年龄、身高、长度、面积、 体积、质量等称为数量

11、,物理学上称为标量显然数量和向量的区别就在于方向问题,矢量与标量是完全不同的两个量铺垫已经完成,至此时机成熟,教师恰时恰点地引导学生思考:在现实世界中,像位移、速度、力等既有大小,又有方向的量是很多的,我们能否在数学学科中对这些量加以抽象,形成一种新的量?由此引入本章重要概念一一向量在数学中,我们把这种既有大小,又有方向的量统称为向量 讨论结果:一略提出问题1在数学中,怎样表示向量呢?2什么叫有向线段?有向线段和线段有何区别和联系?分别可以表示向量的什么?3怎样定义零向量?怎样定义单位向量?4满足什么条件的两个向量叫作相等向量?5有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平

12、行向量?6如果把一组平行向量的起点全部移到一点0,它们是不是平行向量?这时各向量的终点之间有什么关系?7什么是向量的模?活动:教师指导学生阅读教材, 并思考讨论以上问题,特别是有向线段,这是学习向量的关 键我们知道,在物理学中,表示位移最简单的方法,是用一条带箭头的线段,箭头的方向 表示位移的方向,线段的长度表示位移的大小速度和力也是用这种方法表示的,箭头的方向分别表示速度和力的方向,线段长度分别表示速度和力的大小执終点)图 2这种带箭头的线段,在数学中叫作“有向线段” 一般地,若规定线段 AB 的端点 A 为起 点,端点 B 为终点,则线段 AB 就具有了从起点 A 到终点 B 的方向和长度

13、.这种具有方向和长度的线段叫作有向线段 (如图 2),记作AB,线段 AB 的长度也叫作有向线段AB的长度,记作|AB|.有向线段包含三个要素:起点、方向、长度知道了有向线段的起点、方向和长度,它的终点就唯一确定向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向向量也可以用黑体小写字母如a, b, c 表示 一定要学生规范:印刷用黑体a,手写一定要在小写字母上加箭头要注意不能说“向量就是有向线段,有向线段就是向量”,有 向线段只是向量的一种几何表示,二者有本质的区别向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置

14、有关如图2,在线段 AB 的两个端点中,规定一个顺序,假设 A 为起点,B 为终点,我们就说线段 AB 具有方向,具有A起点)5 / 10方向的线段叫作有向线段,通常在有向线段的终点处画上箭头表示它的方向以 A为起 点、B 为终点的有向线段记作AB.起点要写在终点的前面,即是说AB的方向是由点 A 指向 点 B,点 A 是向量的起点.图 3如图 3,关于向量的长度,这是向量的一个重要概念;向量AB(或 a)的大小,就是向量AB(或 a)的长度(或称模),记作|AB|(或| a|).教师应注意引导学生将数量与向量的模进行比较,以明确向量的意义数量有大小而没有方向,其大小有正、负和 0 之分,可进

15、行运算,并可比较大小;向量的模是正数或 0,也可以 比较大小但向量具有方向,由于方向不能比较大小,向量也就不能比较大小,像ab 就没有意义,而| a| | b|就有意义理解了以上向量概念,那么关于向量相等和向量平行就很容易理解了,教师引导学生阅读教材即可讨论结果:用字母 a,b,c,表示向量(印刷用粗黑体表示),手写用字母加箭头来表示,或用表示向量的有向线段的起点和终点字母表示,如AB,CD.注意:手写体上面的箭头一定不能漏写有向线段:具有方向的线段就叫作有向线段,三个要素:起点、方向、长度向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的

16、向量;有向线段有起点、大小和方向三个要素,起点不同, 尽管大小和方向相同,也是不同的有向线段图 43长度为 0 的向量叫零向量,记作 0,规定零向量的方向是任意的长度为单位 1 的向量,叫 单位向量但要注意,零向量、单位向量的定义都只是限制了大小4长度相等且方向相同的向量叫相等向量5关于平行向量的定义:第一,方向相同或相反的非零向量叫平行向量;第二我们规定 0 与任一向量平行,即 0/ a.综合第一、第二才是平行向量的完整定义向量 a, b, c 平行,记作a / b / c.女口图 4.- -* *ccOSA图 5又如图 5,a,b, c 是一组平行向量,任作一条与 a 所在直线平行的直线

17、I,在 I 上任取一点O,则可在 I 上分别作出OA= a,OB=b,OC=c 这就是说,任一组平行向量都可以移动到同6 / 10一直线上,因此,平行向量也叫作共线向量这里教师要提醒学生注意:平行向量可以在同一 直线上,要区别于两平行线的位置关系6是共线向量,也就是平行向量但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系 .7|AB|或| a|表示向量AB(或 a)的大小,即长度(也称为模).应用示例例 1 如图 6,D,E,F 依次是

18、等边 ABC 的边 AB, BC, AC 的中点.在以 A,B,C,D,E,F 为起点或 终点的向量中,图 6(1 )找出与向量DE相等的向量;(2 )找出与向量DF共线的向量.活动:教材安排本例的目的是让学生进一步熟悉向量的概念,属于基础练习,需要用到初中所学平面几何的相关知识,教师引导学生回忆相关知识后,可让学生充分讨论合作解决解:由初中所学三角形中位线定理不难得到:(1)在以 A,B,C,D,E,F 为起点或终点的向量中,与向量DE相等的向量有:AF和FC;在以 A,B,C,D,E,F 为起点或终点的向量中,与向量DE共线的向量有:EC,CE,BC,CB,FD.变式训练判断下列命题是否正

19、确,若不正确,请简述理由.图 7ABCD 中,AB与CD是共线向量;(2)单位向量都相等.解:(1)正确;不正确.点评:本题考查基本概念,对于单位向量、共线向量的概念特征及相互关系必须把握好.教师引导学生画出平行四边形,如图7.因为 AB/CD 所以,AB/CD.由于上面已经明确,单7 / 10位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.例 2 一个人从 A 点出发沿东北方向走了100m 到达 B 点,然后改变方向,沿南偏东 15方向又走了 100m 到达 C 点,求此人从 C 点走回 A 点的位移.活动:本例是一个简单的实际问题,让学生画出

20、有向线段表示位移 .本例目的在于巩固向量概 念及其几何表示.解:根据题意画出示意图,如图 8 所示.|AB|=100m,|BC|=100m, / ABC=45 +15 =60, ABC 为正三角形./-|CA|=100m,即此人从 C 点返回 A 点所走的路程为/ BAC=60,/ CADMBAC - / BAD=15 ,即此人行走的方向为西偏北 15 .点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确 定另外一点的位置.如图 8,由 A 点确定 B 点、C 点的位置.例 3 如图 9,设 O 是正六边形 ABCDEF 勺中心,分别写出图中与OA、OB、OC相

21、等的量.活动:本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边 形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断OA与EF,OB与AF是否相等,是要通过长度相等 方向相反的两个向量的不等,让学生从反面认识向量相等的概念 .解:OA=CB=DO;OB=DC = EO;OC = AB = ED = FO.点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.变式训练(演示课件)1.本例变式一:与向量OA长度相等的100m.8 / 10向量有多少个? (11

22、 个)本例变式二:是否存在与向量OA长度相等、方向相反的向量?(存在)9 / 102.对命题“ a /b/ c 推出 a / c”,关于真假问题,甲、乙两个学生的判断如下:甲生判断是真命题.理由是:由 a / b 可知 a 与 b 的方向相同或相反,由 b / c 可知 c 与 b 的方向相同或相 反,从而有 a 与 c 的方向相同或相反,故 a / c,即原命题为真命题;乙生判断是假命题.理由是:当两个非零向量 a, c 不平行,而 b=0 时,显然 a / b 且 b / c,但不能推出 a / b / c,故此时 结论不成立,即原命题为假命题究竟甲、乙两生谁的判断正确呢?请给以分析 解:

23、乙的判断正确.由于存在“零向量与任一向量都平行”这一特殊结论,所以在平行向量中应弄清是否有零向量存在甲生没有考虑到向量 b 可能为零向量的情况,故甲生的判断是错误的;乙生的判 断完全正确这说明向量平行的传递性若要成立,则“过渡”向量 b 需不为零向量,即在 b 工 0时有:(1)当 a丰0, b丰0 时,由 a / b, b / c 可推出 a / c;(2)若 a 与 c 中有一个为 0,则另一个向量无论是否为0,均可推出 a / c.4(1)下列命题正确的是()a 与 b 共线,b 与 c 共线,则 a 与 c 也共线任意两个相等的非零向量的起点与终点是一平行四边形的四顶点 向量 a 与

24、b 不共线,则 a 与 b都是非零向量有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以 A 不正确由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以 B 不正确向量的平行只要方向相同或相反即可,与起点是否相同无关,所以 D 不正确.对于 C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若 a与 b 不都是非零向量,即 a 与 b 至少有一个是零向量,而由零向量与任一向量都共线 ,可有 a 与 b 共线,不符合已知条件,所以有 a 与 b 都是非零向量,所以只有 C 正确.答案:C

25、点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意正反这两方面的结合变式训练1. 判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2. 把一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是

26、()A. 一条线段B.一段圆弧C.两个点D.一个圆3. 将平行于一直线的所有单位向量的起点平移到同一始点,则这些向量的终点所构成的图形是()本例变式三:与向量OA共线的向量还有哪些?.+ -b-*BC,CB,OD,DO,EF,FE)10 / 10A. 一个点B.两个点C.一个圆D.一条线段答案:1.略 2.D 3.B知能训练课本本节练习 1、2、3课堂小结1. 先由学生回顾本节都学了哪些概念:向量,向量的两种表示,特别是对向量的手写要标上箭头,图示上要标上箭头和始点、终点,零向量、单位向量、平行向量、相等向量等概念,明了平行向量不是平面几何中的平行线段的简单类比2. 再由教师简要总结: 本节课

27、我们学习了向量、向量的两种表示方法及向量的有关概念:如向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是我们进一步学习后续课程的基础,必须要在理解的基础上把握好.3点拨学生要领悟我们是如何从大量的实际背景中获得这些数学概念的方法,本节的数学知识或许将来会忘掉或全部忘掉, 但是我们探究这些知识的方法却会伴随我们一生,永远不会忘掉,使我们终生受益作业如图 10,在梯形 ABCD 中,AB/ CD,AE:ED=BF FC=AB DC,O 是 AC 与 BD 的交点,求证:EO = OF.D 图 10 证明:如图 10, / AB/ CD,. AO:OC=BOOD=AB CD. 又 AE:E

28、D=BF FC=AB DC, AE:ED=AO OC/. EO/ DC.同理,OF/ DC,/E,O,F 在同一直线上. EO AE BF OF.代 EO=OF, DC AD BC DC即|EO|=|OF|.又EO与OF方向相同,EO=OF.设计感想1.本节是平面向量的第一节,对向量概念的理解无疑是重点,也是难点.本节教案的设计总思路是:把学生划分小组合作讨论学习,经过小组成员们的合作探究,对平面向量的基本概念,和基本解题方法有个清晰的认识,学生有很多的成功之处或收获 .对失败或教训之处可能 是对一些概念性问题没有深入研究,导致解题存在困难, 不过这些会通过学习的深入弥补上来的.2.本教案设计

29、充分利用向量的物理背景 作为现代数学重要标志之一的向量引入中学 数学以后,给中学数学带来无限生机.通过本节大量物理背景实例的铺垫及数学问题的解决, 让学生体会到数学在生活中的重要作用,并在实际课堂教学中规范学生的习惯,培养严谨的思考习惯和行为习惯,为后面学习打下基础.11 / 103.本教案设计遵循学生的认知规律,体现新课标理念,设计的教学方法主要是让学生自主探究,呈现“现实情境一数学模型一应用于现实问题”的特点,让学生通过观察、分析、归纳、验证,培养学生的主动探究的积极精神,让学生初步感受到向量确实生动有趣,是培养学生数学能力的很好题材.备课资料12 / 10一、向量中有关概念的辨析1. 数量、向量、有向线段

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论