版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章复习提纲初中数学总复习提纲1.1代数篇一数与式(一)有理数1有理数的分类2数轴的定义与应用3相反数4倒数5绝对值6有理数的大小比较7有理数的运算(二)实数8实数的分类9实数的运算10科学记数法11近似数与有效数字12平方根与算术根和立方根13非负数14零指数次幂负指数次幂(三)代数式15代数式代数式的值16列代数式(四)整式17整式的分类18整式的加减乘除的运算19幂的有关运算性质20乘法公式21因式分解(五)分式22分式的定义23分式的基本性质24分式的运算(六)二次根式25二次根式的意义26根式的基本性质27根式的运算二方程和不等式(一)一元一次方程28方程方程的解的有关定义29一元
2、一次的定义30一元一次方程的解法31列方程解应用题的一般步骤(二)二元一次方程32二元一次方程的定义33二元一次方程组的定义34二元一次方程组的解法(代入法消元法加减消元法)35二元一次方程组的应用(三)一元二次方程36一元二次方程的定义37一元二次方程的解法(配方法因式分解法公式法十字相乘法)38一元二次方程根与系数的关系和根的判别式39一元二次方程的应用(四)分式方程40分式方程的定义41分式方程的解法(转化为整式方程检验)42分式方程的增根的定义43分式方程的应用(五)不等式和不等式组44不等式(组)的有关定义45不等式的基本性质46一元一次不等式的解法47一元一次不等式组的解法48一元
3、一次不等式(组)的应用三函数(一)位置的确定与平面直角坐标系49位置的确定50坐标变换51平面直角坐标系内点的特征52平面直角坐标系内点坐标的符号与点的象限位置53对称问题:P(x,y)Q(x,- y)关于x轴对称 P(x,y)Q(- x,y)关于y轴对称 P(x,y)Q(- x,- y)关于原点对称54变量自变量因变量函数的定义55函数自变量因变量的取值范围(使式子有意义的条件图象法)56函数的图象:变量的变化趋势描述(二)一次函数与正比例函数57一次函数的定义与正比例函数的定义58一次函数的图象:直线,画法59一次函数的性质(增减性)60一次函数y=kx+b(k0)中kb符号与图象位置61
4、待定系数法求一次函数的解析式(一设二列三解四回)62一次函数的平移问题63一次函数与一元一次方程一元一次不等式二元一次方程的关系(图象法)64一次函数的实际应用65一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合(三)反比例函数66反比例函数的定义67反比例函数解析式的确定68反比例函数的图象:双曲线69反比例函数的性质(增减性质)70反比例函数的实际应用71反比例函数的综合应用(四个方面面积问题)(四)二次函数72二次函数的定义73二次函数的三种表达式(一般式顶点式交点式)74二次函数解析式的确定(待定系数法)75二次
5、函数的图象:抛物线画法(五点法)76二次函数的性质(增减性的描述以对称轴为分界)77二次函数y=ax2+bx+c(a0)中abc与特殊式子的符号与图象位置关系78求二次函数的顶点坐标对称轴最值79二次函数的交点问题80二次函数的对称问题81二次函数的最值问题(实际应用)82二次函数的平移问题83二次函数的实际应用84二次函数的综合应用(1)二次函数与方程综合(2)二次函数与其它函数综合(3)二次函数与不等式的综合(4)二次函数与几何综合2.2几何篇1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点
6、连接的所有线段中垂线段最短7经过直线外一点有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行这两条直线也互相平行9同位角相等两直线平行10内错角相等两直线平行11同旁内角互补两直线行12两直线平行同位角相等13两直线平行内错角相等14两直线平行同旁内角互补15三角形两边的和大于第三边16三角形两边的差小于第三边17三角形三个内角的和等180°18直角三角形的两个锐角互余19三角形的一个外角等于和它不相邻的两个内角的和20三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边对应角相等22有两边和它们的夹角对应相等的两个三角形全等(SAS)23有两角和它们的夹边
7、对应相等的两个三角形全等(ASA)24有两角和其中一角的对边对应相等的两个三角形全等(AAS)25有三边对应相等的两个三角形全等(SSS)26有斜边和一条直角边对应相等的两个直角三角形全等(HL)27在角的平分线上的点到这个角的两边的距离相等28到一个角的两边的距离相同的点在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线底边上的中线和高互相重合33等边三角形的各角都相等并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等那么
8、这两个角所对的边也相等(等角对等边)35三个角都相等的三角形是等边三角形36有一个角等于60°的等腰三角形是等边三角形37在直角三角形中如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39线段垂直平分线上的点和这条线段两个端点的距离相等40和一条线段两个端点距离相等的点在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42关于某条直线对称的两个图形是全等形43如果两个图形关于某直线对称那么对称轴是对应点连线的垂直平分线44两个图形关于某直线对称如果它们的对应线段或延长线相交那么交点在对称轴上4
9、5如果两个图形的对应点连线被同一条直线垂直平分那么这两个图形关于这条直线对称46直角三角形两直角边ab的平方和等于斜边c的平方即a+b=c47如果三角形的三边长abc有关系a+b=c那么这个三角形是直角三角形48四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51任意多边的外角和等于360°52平行四边形的对角相等53平行四边形的对边相等54夹在两条平行线间的平行线段相等55平行四边形的对角线互相平分56两组对角分别相等的四边形是平行四边形57两组对边分别相等的四边形是平行四边
10、形58对角线互相平分的四边形是平行四边形59一组对边平行相等的四边形是平行四边形60矩形的四个角都是直角61矩形的对角线相等62有三个角是直角的四边形是矩形63对角线相等的平行四边形是矩形64菱形的四条边都相等65菱形的对角线互相垂直并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半即S=(a×b)÷267四边都相等的四边形是菱形68对角线互相垂直的平行四边形是菱形69正方形的四个角都是直角四条边都相等70正方形的两条对角线相等并且互相垂直平分每条对角线平分一组对角71关于中心对称的两个图形是全等的72关于中心对称的两个图形对称点连线都经过对称中心并且被对称中心平分
11、73如果两个图形的对应点连线都经过某一点并且被这一点平分那么这两个图形关于这一点对称74等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78如果一组平行线在一条直线上截得的线段相等那么在其他直线上截得的线段也相等79经过梯形一腰的中点与底平行的直线必平分另一腰80经过三角形一边的中点与另一边平行的直线必平分第三边81三角形的中位线平行于第三边并且等于它的一半82梯形的中位线平行于两底并且等于两底和的一半L=(a+b)S=L×h83如果a:b=c:d那么ad=bc如果ad=bc那么a:b=c:d84如果a
12、/b=c/d那么(a±b)/b=(c±d)/d85如果a/b=c/d=m/n(b+d+n0)那么(a+c+m)/(b+d+n)=a/b86三条平行线截两条直线所得的对应线段成比例87平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例88如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例那么这条直线平行于三角形的第三边89平行于三角形的一边并且和其他两边相交的直线所截得的三角形的三边与原三角形三边对应成比例90平行于三角形一边的直线和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似91两角对应相等两三角形相似(ASA)92直角三角形
13、被斜边上的高分成的两个直角三角形和原三角形相似93两边对应成比例且夹角相等两三角形相似(SAS)94三边对应成比例两三角形相似(SSS)95如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例那么这两个直角三角形相似96相似三角形对应高的比对应中线的比与对应角平分线的比都等于相似比97相似三角形周长的比等于相似比98相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆
14、心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹是以定点为圆心定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹是这个角的平分线108到两条平行线距离相等的点的轨迹是和这两条平行线平行且距离相等的一条直线109不在同一直线上的三个点确定一条直线110垂直于弦的直径平分这条弦并且平分弦所对的两条弧111平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧弦的垂直平分线经过圆心并且平分弦所对的两条弧平分弦所对的一条弧的直径垂直平分弦并且平
15、分弦所对的另一条弧112圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114在同圆或等圆中相等的圆心角所对的弧相等所对的弦相等所对的弦的弦心距相等115在同圆或等圆中如果两个圆心角两条弧两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116一条弧所对的圆周角等于它所对的圆心角的一半117同弧或等弧所对的圆周角相等;同圆或等圆中相等的圆周角所对的弧也相等118半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119如果三角形一边上的中线等于这边的一半那么这个三角形是直角三角形120圆的内接四边形的对角互补并且任何一个外角都等于它的内对角
16、121直线L和O相交dr直线L和O相切d=r直线L和O相离dr122经过半径的外端并且垂直于这条半径的直线是圆的切线123圆的切线垂直于经过切点的半径124经过圆心且垂直于切线的直线必经过切点125经过切点且垂直于切线的直线必经过圆心126从圆外一点引圆的两条切线它们的切线长相等圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角等于它所夹的弧对的圆周角129如果两个弦切角所夹的弧相等那么这两个弦切角也相等130圆内的两条相交弦被交点分成的两条线段长的积相等131如果弦与直径垂直相交那么弦的一半是它分直径所成的两条线段的比例中项132从圆外一点引圆的切线和割线
17、切线长是这点到割线与圆交点的两条线段长的比例中项133从圆外一点引圆的两条割线这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切那么切点一定在连心线上135两圆外离dR+r两圆外切d=R+r两圆相交R-rdR+r(Rr)两圆内切d=R-r(Rr)两圆内含dR-r(Rr)136相交两圆的连心线垂直平分两圆的公共弦137把圆分成n(n3):依次连结各分点所得的多边形是这个圆的内接正n边形经过各分点作圆的切线以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138任何正多边形都有一个外接圆和一个内切圆这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180
18、6;/n140正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积3a/4a表示边长143如果在一个顶点周围有k个正n边形的角由于这些角的和应为360°因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)第一章 实数重点 实数的有关概念及性质,实数的运算内容提要一、 重要概念1数的分类及概念 数系表:说明:“分类”的
19、原则:1)相称(不重、不漏)2)有标准2非负数:正实数与零的统称。(表为:x0)(a为一切实数) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。3倒数: 定义及表示法性质:A.a1/a(a±1);B.1/a中,a0;C.0a1时1/a1;a1时,1/a1;D.积为1。4相反数: 定义及表示法性质:A.a0时,a-a;B.a与-a在数轴上的位置;C.和为0,商为-1。5数轴:定义(“三要素”)作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。6奇数、偶数、质数、合数(正整数自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数
20、)7绝对值:定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。a0,符号“”是“非负数”的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有“”出现,其关键一步是去掉“”符号。二、 实数的运算1 运算法则(加、减、乘、除、乘方、开方)2 运算定律(五个加法乘法交换律、结合律;乘法对加法的分配律)3 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。三、 应用举例(略) 附:典型例题1 已知:a、b、x在数轴上的位置如下图,求证:x-a+x-b=b
21、-a. 2.已知:a-b=-2且ab<0,(a0,b0),判断a、b的符号。第二章 代数式重点代数式的有关概念及性质,代数式的运算内容提要代数式一、 重要概念 分类: 1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 整式和分式统称为有理式。2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。有除法运算并且除式中含有字母的有理式叫做分式。3.单项式与多项式没有加减运算的整式叫做单项式。(数字与字母的积包括单独的一个数或字母)几个单项式的和,叫做多项式。说明:根据
22、除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如, =x,=x等。4.系数与指数区别与联系:从位置上看;从表示的意义上看5.同类项及其合并 条件:字母相同;相同字母的指数相同 合并依据:乘法分配律6.根式表示方根的代数式叫做根式。含有关于字母开方运算的代数式叫做无理式。注意:从外形上判断;区别:、是根式,但不是无理式(是无理数)。7.算术平方根正数a的正的平方根(a0与“平方根”的区别);算术平方根与绝对值 联系:都是非负数,=a区别:a中,a为一切实数;
23、中,a为非负数。8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。满足条件:被开方数的因数是整数,因式是整式;被开方数中不含有开得尽方的因数或因式。把分母中的根号划去叫做分母有理化。9.指数 (幂,乘方运算) a0时,0;a0时,0(n是偶数),0(n是奇数)零指数:=1(a0) 负整指数:=1/(a0,p是正整数)二、 运算定律、性质、法则1分式的加、减、乘、除、乘方、开方法则2分式的性质基本性质:=(m0)符号法则:繁分式:定义;化简方法(两种)3整式运算法则(去括号、添括号法则)4幂的运算性质:·=;÷=;=;=;
24、技巧:5乘法法则:单×单;单×多;多×多。6乘法公式:(正、逆用) (a+b)(a-b)= (a±b)=7除法法则:单÷单;多÷单。8因式分解:定义;方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。9算术根的性质:;(a0,b0);(a0,b0)(正用、逆用)10根式运算法则:加法法则(合并同类二次根式);乘、除法法则;分母有理化:A.;B.;C.11科学记数法:(1a10,n是整数三、 应用举例(略)四、 数式综合运算(略)第三章 统计初步重点 内容提要一、 重要概念1.总体:考察对象的全体。2.个
25、体:总体中每一个考察对象。3.样本:从总体中抽出的一部分个体。4.样本容量:样本中个体的数目。5.众数:一组数据中,出现次数最多的数据。6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)二、 计算方法1.样本平均数:;若,,则(a常数,接近较整的常数a);加权平均数:;平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。2样本方差:;若,则(a接近、的平均数的较“整”的常数);若、较“小”较“整”,则;样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,
26、通常用样本方差去估计总体方差。3样本标准差:三、 应用举例(略)第四章 直线与图形重点相交线与平行线、三角形、四边形的有关概念、判定、性质。 内容提要一、 直线、相交线、平行线 1线段、射线、直线三者的区别与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。 2线段的中点及表示3直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”) 4两点间的距离(三个距离:点-点;点-线;线-线)5角(平角、周角、直角、锐角、钝角)6互为余角、互为补角及表示方法7角的平分线及其表示8垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9对顶角及性质
27、10平行线及判定与性质(互逆)(二者的区别与联系)11常用定理:同平行于一条直线的两条直线平行(传递性);同垂直于一条直线的两条直线平行。12定义、命题、命题的组成13公理、定理14逆命题二、 三角形分类:按边分;按角分1定义(包括内、外角)2三角形的边角关系:角与角:内角和及推论;外角和;n边形内角和;n边形外角和。边与边:三角形两边之和大于第三边,两边之差小于第三边。角与边:在同一三角形中, 3三角形的主要线段讨论:定义××线的交点三角形的×心性质 高线中线角平分线中垂线中位线一般三角形特殊三角形:直角三角形、等腰三角形、等边三角形4特殊三角形(直角三角形、等
28、腰三角形、等边三角形、等腰直角三角形)的判定与性质5全等三角形一般三角形全等的判定(SAS、ASA、AAS、SSS)特殊三角形全等的判定:一般方法专用方法6三角形的面积一般计算公式性质:等底等高的三角形面积相等。7重要辅助线中点配中点构成中位线;加倍中线;添加辅助平行线8证明方法直接证法:综合法、分析法间接证法反证法:反设归谬结论证线段相等、角相等常通过证三角形全等证线段倍分关系:加倍法、折半法证线段和差关系:延结法、截余法证面积关系:将面积表示出来三、 四边形分类表:1一般性质(角)内角和:360°顺次连结各边中点得平行四边形。推论1:顺次连结对角线相等的四边形各边中点得菱形。推论
29、2:顺次连结对角线互相垂直的四边形各边中点得矩形。外角和:360°2特殊四边形研究它们的一般方法:平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定判定步骤:四边形平行四边形矩形正方形菱形互相垂直平分且相等对角线的纽带作用:3对称图形轴对称(定义及性质);中心对称(定义及性质)4有关定理:平行线等分线段定理及其推论1、2三角形、梯形的中位线定理平行线间的距离处处相等。(如,找下图中面积相等的三角形) 5重要辅助线:常连结四边形的对角线;梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。6作图:任意等分线段。四、 应用举例
30、(略)第五章 方程(组)重点一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题) 内容提要一、 基本概念1方程、方程的解(根)、方程组的解、解方程(组)2 分类:方程二、 解方程的依据等式性质1a=ba+c=b+c2a=bac=bc (c0)三、 解法1一元一次方程的解法:去分母去括号移项合并同类项系数化成1解。2 元一次方程组的解法:基本思想:“消元”方法:代入法加减法四、 一元二次方程1定义及一般形式:2解法:直接开平方法(注意特征)配方法(注意步骤推倒求根公式)公式法:因式分解法(特征:左边=0)3根的判别式:4根与系数顶的关系:逆定理:若,则以为根的一
31、元二次方程是:。5常用等式: 五、 可化为一元二次方程的方程1分式方程定义基本思想:基本解法:去分母法换元法(如,)验根及方法2无理方程定义基本思想:基本解法:乘方法(注意技巧!)换元法(例,)验根及方法3简单的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。六、 列方程(组)解应用题概述列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。设元(未知数)。直接未知数间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。用含未知数的代数式表
32、示相关的量。寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。解方程及检验。答案。综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 常用的相等关系1 行程问题(匀速运动)相遇处基本关系:s=vt相遇问题(同时出发):+=;(相遇处)追及问题(同时出发):若甲出发t小时后,乙才出发,而后在B处追上甲,则水中航行:;2 配料问题:溶质=溶液×浓度 溶液=溶质+溶剂3增
33、长率问题:4工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。5几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。注意语言与解析式的互化如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。注意从语言叙述中写出相等关系。如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。注意单位换算如,“小时”“分钟”的换算;s、v、t单位的一致等。七、应用举例(略)第
34、六章 一元一次不等式(组)重点一元一次不等式的性质、解法 内容提要1 定义:ab、ab、ab、ab、ab。2 一元一次不等式:axb、axb、axb、axb、axb(a0)。3 一元一次不等式组:4 不等式的性质:a>ba+c>b+ca>bac>bc(c>0)a>bac<bc(c<0)(传递性)a>b,b>ca>ca>b,c>da+c>b+d.5一元一次不等式的解、解一元一次不等式6一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)7应用举例(略)第七章 相似形重点相似三角形的判定和性质内容提要一、本
35、章的两套定理第一套(比例的有关性质):(比例基本定理)涉及概念:第四比例项比例中项比的前项、后项,比的内项、外项黄金分割等。第二套:注意:定理中“对应”二字的含义;平行相似(比例线段)平行。二、相似三角形性质1对应线段;2对应周长;3对应面积。三、相关作图作第四比例项;作比例中项。四、证(解)题规律、辅助线1“等积”变“比例”,“比例”找“相似”。2找相似找不到,找中间比。方法:将等式左右两边的比表示出来。3添加辅助平行线是获得成比例线段和相似三角形的重要途径。4对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。5对于复杂的几何图形,采用将部分需要的图形(
36、或基本图形)“抽”出来的办法处理。五、 应用举例(略)第八章 函数及其图象重点正、反比例函数,一次、二次函数的图象和性质。 内容提要一、平面直角坐标系1各象限内点的坐标的特点2坐标轴上点的坐标的特点3关于坐标轴、原点对称的点的坐标的特点4坐标平面内点与有序实数对的对应关系二、函数1表示方法:解析法;列表法;图象法。2确定自变量取值范围的原则:使代数式有意义;使实际问题有意义。3画函数图象:列表;描点;连线。三、几种特殊函数(定义图象性质)1 正比例函数定义:y=kx(k0) 或y/x=k。图象:直线(过原点)性质:k>0,k<0,2 一次函数定义:y=kx+b(k0)图象:直线过点(0,b)与y轴的交点和(-b/k,0)与x轴的交点。性质:k>0,k<0,图象的四种情况:3 二次函数定义: 特殊地,都是二次函数。图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。性质:a>0时,在对称轴左侧,右侧;a<0时,在对称轴左侧,右侧。4.反比例函数定义:或xy=k(k0)。图象:双曲线(两支)用描点法画出。性质:k>0时,图象位于,y随x;k<0时,图象位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职植物保护(农药应用)试题及答案
- 2025年高职数字媒体(VR制作进阶)试题及答案
- 2025年大学历史(世界近现代史)试题及答案
- 2025年大学化工类(化工安全规范)试题及答案
- 大学(药学)药物分析技术2026年综合测试题及答案
- 2025年大学大四(交通运输)交通运输综合试题及答案
- 2025年大学摄影(摄影教育心理学)试题及答案
- 2025年中职地质工程技术(地质勘探基础)试题及答案
- 2025年大学大三(会展经济与管理)会展经济分析阶段测试题及答案
- 2025年大学大三(生物科学)细胞生物学实验阶段测试题及答案
- 中国工艺美术馆招聘笔试试卷2021
- 申论范文宝典
- 【一例扩张型心肌病合并心力衰竭患者的个案护理】5400字【论文】
- 四川桥梁工程系梁专项施工方案
- DB32T 3695-2019房屋面积测算技术规程
- 贵州省纳雍县水东乡水东钼镍矿采矿权评估报告
- GB 8270-2014食品安全国家标准食品添加剂甜菊糖苷
- 2023年杭州临平环境科技有限公司招聘笔试题库及答案解析
- 易制毒化学品日常管理有关问题权威解释和答疑
- 湖北省高等教育自学考试
- 企业三级安全生产标准化评定表(新版)
评论
0/150
提交评论