




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、9 / 8姓 名:离散数学作业4学 号:得 分:离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部 分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外) 安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出 掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作 业,大家要认真及时地完成图论部分的综合练习作业。、填空题1 .已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则Glj勺边数是15.2 .设给定图G(如右由图所示),则图G的点割集是 f.3 .设G是一个图,结点集合为V,
2、边集合为E,则G的结点G数之和等于边数的两倍.4 .无向图G存在欧拉回路,当且仅当 G连通且 等干出 <.5 .设G=<V, E>是具有n个结点的简单图,若在 G中每一对结点度数之 和大于等于n-1,则在G中存在一条汉密尔顿路.6 .若图G=<V, E>中具有一条汉密尔顿回路,则对于结点集 V的每个非空 子集S,在G中删除S中的所有结点得到的连通分支数为 W,则S中结点数|S| 与W满足的关系式为 W(G-V1) V1 .7 .设完全图Kn有n个结点(n 2), m条边,当 n为奇数 时、Kn 中存在欧拉回路.8 .结点数v与边数e满足e=v-1 关系的无向连通图
3、就是树.9 .设图G是有6个结点的连通图,结点的总度数为 18,则可从G中删去4 条边后使之变成树.10.设正则5叉树的树叶数为17,则分支数为i =5.二、判断说明题(判断下列各题,并说明理由.)1 .如果图G是无向图,且其结点度数均为偶数,则图 G存在一条欧拉回 路. .(1)不正确,缺了一个条件,图 G应该是连通图,可以找出一个反例,比 如图G是一个有孤立结点的图。2 .如下图所示的图G存在一条欧拉回路.(2)不正确,图中有奇数度结点,所以不存在是欧拉回路3 .如下图所示的图G不是欧拉图而是汉密尔顿图.图G解:正确因为图中结点a, b, d, f的度数都为奇数,所以不是欧拉图如果我们沿着
4、(a,d,g,f,e,b,c,a),这样除起点和终点是a外,我们经过每个点 一次仅一次,所以存在一条汉密尔顿回路,是汉密尔顿图4 .设G是一个有7个结点16条边的连通图,则G为平面图.解:(1)错误假设图G是连通的平面图,根据定理,结点数 v,边数为e,应满足e小于 等于3v-6,但现在16小于等于3*7-6,显示不成立。所以假设错误。5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.(2)正确根据欧拉定理,有v-e+r=2,边数v=11,结点数e=6,代入公式求出面数 r=7三、计算题V3, V4, V5, E=(V1,V3),(V2,V3),(V2,V4),1 .设 G=<
5、;V, E>, V= V1, V2 (V3,V4),(V3,V5),(V4,V5) ,试给出G的图形表示;(2)写出其邻接矩阵;求出每个结点的度数;(4)画出其补图的图形.解:(2)邻接矩阵为0 0 10 00 0 110110 110 110 10 0 110(3) V1结点度数为1, V2结点度数为2, V3结点度数为3, V4结点度数为2, V5结点度数为2(4)补图图形为2.图 G=<V, E>,其中 V= a, b, c, d, e , E= (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e)
6、 ,对应边的权值依次为 2、1、2、3、6、1、4 及 5,试(1)画出G的图形;(2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值.(1) G的图形如下:1(2)写出G的邻接矩阵 Q210220036100420340526250(3) G权最小的生成树及其权值13.已知带权图G如右图所示.(1)求图G的最小生成树;(2)计算该生成树的权值.解:(1)最小生成树为(2)该生成树的权值为(1+2+3+5+7)=184.设有一组权为2, 3, 5, 7,17, 31,试画出相应的最优二叉树,计算该最优 二叉树的权.权为 2*5+3*5+5*4+7*3+17*2+31=131四、证明题1 .设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它 的补图G中的奇数度顶点个数相等.证明:设G V,E , G V,E .则E是由n阶无向完全图Kn的边删去E 所得到的.所以对于任意结点u V, u在G和G中的度数之和等于u在Kn中 的度数.由于n是大于等于3的奇数,从而Kn的每个结点都是偶数度的(n 1 ( 2)度),于是若u V在G中是奇数度结点,则它在G中也是奇数度 结点.故图G与它的补图G中的奇数度结点个数相等.k .2 .设连通图G有k个奇数度的结点,证明在图 G中至少要添加上条边才2能使其成为欧拉图.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店员英文面试题目及答案
- 法律明白人培训
- 景区安全培训内容大纲
- 口罩安全标准知识培训课件
- 口红化妆师知识培训课件
- 培训记不住知识点的原因
- 口才课课件教学课件
- 培训行业知识付费系统课件
- 2025年绿色生态工业园区场地租赁合作协议
- 2025老年慢性病管理医疗资源对接与诊疗服务协议
- 2025安徽农业大学辅导员考试试题及答案
- 井工煤矿风险监测预警处置方案之安全监控系统监测预警处置方案
- 入股买船合同协议书
- 反洗钱知识竞赛题库反洗钱法知识测试题题库(题目+答案+解析)
- NB/T 11629-2024煤炭行业物资分类与编码规范
- 2025-2030中国增强型飞行视觉系统行业市场发展趋势与前景展望战略研究报告
- 电梯有限空间作业安全专项施工方案
- 《锂离子电池正极材料研究》课件
- 无呕吐病房的CINV管理
- JCC工作循环检查流程与标准
- 门窗工程采购相关知识
评论
0/150
提交评论