




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、chapt 5. stress due to bending 25.1 introductionstress distribution & the resultantwhat about bending? 3 geometry of deform. strainstress111limlim00ocdosdsdkcurvaturess radius of curvature-(1) 45.2 geometry of deformationconsidering a straight beam with the sym. cross-section of homogeneous mate
2、rial under pure bending 5sym. of abed & bcfe plane surfaces long. axis remain plane & plane ad,be,cf have a common point of intersection oassume no-deform. in y-dir. ad=a1d1 , be=b1d1 6for linear elements on the plane of sym. / long. axisshorten ”neutral axis.” () neutral surface or planeelo
3、ngate 7ysddyassyssypqpqqpyqpsrssrxxlimit the )( )(111111-(2)(1) 8assume (2) holds for every line element / long. axis (2) independent of materialfor transverse dirs.yxzy 9ex 5.1) a steel bar of rectangular section under a constant moment. if , min. permissible & angle change?3ys01029.204.05.375.
4、1) (15.37105.372751013max3maxradmmsmconstconstdsdmmmyx 105.3 stress distribution & equil. requirements for a line element / the long. axis,using hookes law like a tensile bar comp. for y tension for y requirements areyeexxmdaymdazmdafaxzaxyaxx00 11wherely)(identical 0section cross .0 andcentroid
5、 the throughpassmust 0asection -cross theofmoment 10 zydasymzydaedazyedazmaxisx ydastydaedaeydafaaaaxyaaaaxx(2)(2) 12zxzxzzaaaxzimyeimyydsdeiiwheremdayedayyedaymalso eimasection cross theof intertia) (ofmoment ) (2nd : day ,za22(2)-(3) 13ex 5.2)4 point bending of pure alumina beam .if the fracture s
6、tress =240mpa ,p at fracture? 14bmdpam .max(3)n.)mmm(mmpanmmmm).mm)(.(mpaabh pmpabhpabhhpabhdyybdzdyydayiiypaim-xxhyxxazzzyhhhhbb552151011010681212406fracturesit ,240when 612)2(12 where 232622max fractureat max232max3222x222222 15ex 5.3)(a)(b)location of centroid & iz ? 16(a)(2tdtwtarea,0get toa
7、yda(total area) c =ac +2ac must hold)(2)()2()2122)(2(2tdtwttdttdwtct(dt)t(d)twt(dtdtwtcwdt 1722222222)(asidasydasidasysdadaydasyisyydayizzzz letyzyzs“parallel axis theorem”centroid 18iz=(iz)+(iz)=(ic)i+ai(c-c)2+(ic)+a(c-c)22322)(21)(12)(2)2(12tdctdttdtctdwtwt(b) similarly,34812543tdidczc & iz pr
8、ogram “moment of inertia” 19fig 5.14 see appendix c,d,e for i 205.4 stress in symmetric elastic beams with variable bending momenteven for non-pure bending ,(1)(3) are still good approx.for slender & sym. beams 21ex 5.4)1000psisuch that determine1000 ,6max llbphb 22)4maxplmftinftinlbinlbpbhlbhpl
9、bhplhbhiwhereihpliyplzzzx12121100033661000232 2381212 244 232max23max3max(3) 23ex 5.5)p=7kn , l=6mmax. tensile stress?1th2tbmmtmmt75. 775. 521 24)if neglecting weightmpamknmmmmmmmnknmmbtthbt)t(h-twhere iihmimymknplmzzz194/1094.111010164.21004210164.2 22212122)2( 42243347max4722232321maxmaxmaxmax 25m
10、pamkn.thtbhbmknlalwwherewlm71.1910210164. 210036237. 02370 )2()2(277 297max2132maxdue to weight 26ex 5.6)max tensile & compressive stress?5,4 ,2bakipspab 27634. 2266172232277212332 c )sfdlbftpam800042000maxfor c & iac=aici+aiiciiaici+aiiciiai+aiior program “moment of inertia”mbdaba bappb2pa
11、28i=ii+iii=ici+(c-ci)2ai+icii+(c-cii)2aiipsi.maxpsiftinininlbftimy.-c yxx221761011234628000 62.34-cy ie. . bottomat comp. .4397126 .101654. 4800046547ie. surface. at top le tensimax.6 .101644.18167.5774.21472154. 11272223346. 12122342323 at x=a+b check () 29ex 5.7)stress? tensile.6,3,213000maxcbaftl
12、bw 30) neglecting the weightuse bending of beams to get sfd & bmdfig. 5.20(a) & (b) 315.20(c) fig (seeft 43. 9xat lbft10333. 1m5maxfor c & ic centerpsi550.25ftin12in6 .375in6ft10333. 1iym)(in6 .37512) 112() 18(12128i452hyzmaxmaxx433 32ex 5.8) weight theofeffect theeinvestigatstress comp.
13、 & tensilemax,mm7050t ifm5b,m10am/kn10q0ab 33) t=50mm using moment of inertia2448105,10604. 2,175mmammimmcmknaqwmknmmmmmmknalvlengthweight/85.13/85. 3101105/77023243 34using bending of beams(see fig. 5.23 & 24) m=-173.1knm at x=10m & m=97.38knm at x=3.75m 35mpampa.xmpampaxatmax44.6510604
14、.2)175(38.9705.2810604.2)175250(38.97 753at 3.11610604.2)175()1.173(86.4910604.2)175250(1.173 10 comp & tensile.8max8min8min8maxif t=70mmmax. compressivemax. tensile 36ex 5.9)? allowablemax 24ksi52.7 ,3with pipe steel hollow a6,8allowi0prrba a=b= 37) fbdrppbpabapmr6)(0)(4pipe hollowfor 4sinshaft
15、 solidfor 4404222izzazzrrirrdr dridayiiforab 38section modulusfor given load, we can select the cross section on the basis of simy smyi s msmaxmaxmaxmaxmax(3)dependent on geometry only 39ex 5.10)beam.-h a selectksilbpa201200 40)192009 .1412)2/1814181200(9141412,202090012)2/1815181200(2813151096.1212
16、10201812001812002max32max2max3332maxmaxin.s w ksipsiswlmin.swinftinlbinksiksiftlbmsftlbplmweightxma with select weinstead weightthe gconsiderin but with c.1 table usingnot good!ok 415.6 shear stress distribution in symmetric beams with variable bending momentvariable m shear force shear stress on th
17、e section cf) normal stress given by (3)vdxdm 42moment & force equil. fig 5.32 43 fig 5.33 44zyxaazyxxyxzazazazyxxaxyxxxaxiyv(x)qfdxdffydayqletydaidxdmxfdxdfydaixvydaixmxxmydaixmydaixxmfdafda110flow shear: & 1lim)()()()(011111 for a1for total a 45xyzyxbivq-(4)in a case of a rectangular beamv
18、dydzyhivdaavbhvivhyhiv yhbydybydydzydaqbbhhhybbhyzaxyzyxyxyzxya 222212/12/2/2/112220max21221242also2323842 42(4) 3/2at the neutral surfacezyxyxyxyxivqbfxbf b widththe across ddistribute uniformaly is if 46ex 5.12)p=1500lb b shear stress?(neglect the weight)1 47)psiinininlbbhdhdpbbhdhdbppv)d(hdbdhhby
19、bdyydaqwherebivqxyzxyyxh/dhh/y31000)3)(2() 13)(1500(6 )(612)(2222212bhi 3232322223z2221“v ” 48ex 5.13)p? allowable max.ft/lb45psi180psi12003aa oak 49lbinftinlbftinftftlbininpsilbinpsiftftftinlbininpsiftwlbhlipbhwlplbhmbhhmwlplmmaaalx 6610121)1236154510021200(62)12436604510021200(62)4366045310061200(
20、62)43(684612)2(84223322222222max3maxmax22max)bh15 50lbplblbinftftinftlbpsiinwlbhpbhwlpbhhbwlpbhybydaqbbhqwlpwlpvvallowableaahhx where also661066105 .1428712126106451801063412161064518010634344)(38)(68212)22(222232232max2202203max0max6 51ex 5.14)?maxmax 52)maxmaxmaxmax32max23max416232312866122)( beam
21、, slendar a forlhahplapapbbhbhpahplbhplbhhplslenderness 1/10 53circular cross- sectionassuming uniform distribution through bavrvrrrvbivqbivqyzxy34342432 :2430maxa but you must consider the free surface-effect!3232322sin 32342 whererdrrddrrryda q orrrrq 5422020200440330max34 )( 2 )(4)(32 iiiiiirrrrrravrrrrrrvbivq& for a thin hollow shafttbydaq2, 55ex 5.15)pxppxpbpbxpxslddd max0maxmaxmax 0)(407
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论