高考数学(文数)二轮专题突破训练15《直线与圆》 (学生版)_第1页
高考数学(文数)二轮专题突破训练15《直线与圆》 (学生版)_第2页
高考数学(文数)二轮专题突破训练15《直线与圆》 (学生版)_第3页
高考数学(文数)二轮专题突破训练15《直线与圆》 (学生版)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专题能力训练15直线与圆一、能力突破训练1.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C.2D.222.已知三点A(1,0),B(0,3),C(2,3),则ABC外接圆的圆心到原点的距离为()A.B.213C.253D.3.直线y=kx+3与圆(x-1)2+(y+2)2=4相交于M,N两点,若|MN|23,则实数k的取值范围是()A.-,-125B.-,-125C.-,125D.-,1254.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=()A.26B.8C.46D.105.已知直线y=x+1与圆x2+y2+2y-3=0交于A,

2、B两点,则|AB|=. 6.已知aR,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是. 7.若直线xa+yb=1(a>0,b>0)过点(1,2),则2a+b的最小值为. 8.已知P是抛物线y2=4x上的动点,过P作抛物线准线的垂线,垂足为M,N是圆(x-2)2+(y-5)2=1上的动点,则|PM|+|PN|的最小值是. 9.在平面直角坐标系xOy中,以坐标原点O为圆心的圆与直线x-3y=4相切.(1)求O的方程;(2)若O上有两点M,N关于直线x+2y=0对称,且|MN|=23,求直线MN的方程;(3)设O与x

3、轴相交于A,B两点,若圆内的动点P使|PA|,|PO|,|PB|成等比数列,求PA·PB的取值范围.10.已知O:x2+y2=4,点A(3,0),以线段AB为直径的圆内切于O,记点B的轨迹为.(1)求曲线的方程;(2)直线AB交O于C,D两点,当B为CD的中点时,求直线AB的方程.11.已知过点A(0,1)且斜率为k的直线l与C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OM·ON=12,其中O为坐标原点,求|MN|.二、思维提升训练12.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22.则圆M与圆N:(

4、x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离13.已知直线x+y+2=0分别与x轴、y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则ABP面积的取值范围是()A.2,6B.4,8C.2,32D.22,3214.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若PA·PB20,则点P的横坐标的取值范围是. 15.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P'yx2+y2,-xx2+y2;当P是原点时,定义P的“伴随点”为它自身.现有下列命题:若点A的“伴随点”是点

5、A',则点A'的“伴随点”是点A;单位圆上的点的“伴随点”仍在单位圆上;若两点关于x轴对称,则它们的“伴随点”关于y轴对称;若三点在同一条直线上,则它们的“伴随点”一定共线.其中的真命题是.(写出所有真命题的序号) 16.在平面直角坐标系xOy中,已知C1:(x+3)2+(y-1)2=4和C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被C1截得的弦长为23,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与C1和C2相交,且直线l1被C1截得的弦长与直线l2被C2截得的弦长相等,试求所有满足条件的点P的坐标.17.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论