C++_数值_三次样条插值_自动选取步长梯形法_Romberg求积法_列主元高斯消去法_列主元LU分解法_Jacobi迭_第1页
C++_数值_三次样条插值_自动选取步长梯形法_Romberg求积法_列主元高斯消去法_列主元LU分解法_Jacobi迭_第2页
C++_数值_三次样条插值_自动选取步长梯形法_Romberg求积法_列主元高斯消去法_列主元LU分解法_Jacobi迭_第3页
C++_数值_三次样条插值_自动选取步长梯形法_Romberg求积法_列主元高斯消去法_列主元LU分解法_Jacobi迭_第4页
C++_数值_三次样条插值_自动选取步长梯形法_Romberg求积法_列主元高斯消去法_列主元LU分解法_Jacobi迭_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数值分析上机实验报告之样条插值1.三次样条插值(初值条件1):P52.9、给定函数y=fx的函数表和边界条件s''75=0,s''80=0,求三次样条插值函数s(x),并求f(78.3)的近似值。函数表x757677787980y=fx2.7682.8332.9032.9793.0623.153源代码:yangtiao.cpp#include<iostream.h>#include<math.h>void main()int choice = 0;int n = 2;double xx,*x, *y,*a,*b,*a1,*b1,*h,*m

2、;cout<<"请输入插值节点个数n:"<<endl;cin >>n;x = new doublen; y = new doublen;a = new doublen; b = new doublen;a1 = new doublen; b1 = new doublen;h = new doublen-1; m = new doublen+1;cout<<"请输入"<<n<<"个插值的节点(xi,yi):"<<endl;for (int i = 0 ;

3、 i < n ; i+)cin>>xi>>yi;for (int j = 0 ; j < n-1 ; j+)hj = xj+1 - xj;cout<<"请输入待估点xx:"<<endl;cin>>xx;cout<<"请选择边界条件:"<<endl;cin>>choice;switch(choice)case 1:double temp1,temp2;a0 = 0;an-1 = 1;cout<<"请输入边界条件的两个一阶微商值s

4、'(x1)与s'(xn):"<<endl;cin>>temp1>>temp2;b0 = 2*temp1;bn-1 = 2*temp2;break;case 2:a0 = 1;an-1 = 0;b0 = 3/h0*(y1-y0);bn-1 = 3/hn-2*(yn-1-yn-2);break;for (int k = 1 ; k<n-1 ; k+)ak = hk-1/(hk-1+hk);bk = 3*( (1-ak)/hk-1*(yk-yk-1) + ak/hk*(yk+1-yk) );a10 = -a0/2;b10 = b0/

5、2;for (int l = 1; l<n ;l+)a1l = -al/(2+(1-al)*a1l-1);b1l = ( bl - (1-al)*b1l-1 )/( 2+ (1-al) * a1l-1 );mn = 0;for (j = n-1 ; j>=0; j-)mj = a1j * mj+1 + b1j;/判别xx所在区间并输出结果cout<<"n插值结果为:"for(k = 0 ;k <n-1 ;k+)if (xk <= xx && xk+1 >xx )double output = 0;output = (

6、1+2*(xx-xk)/(xk+1-xk)* pow(xx-xk+1)/(xk-xk+1),2) *yk +(1+2*(xx-xk+1)/(xk-xk+1)* pow(xx-xk)/(xk+1-xk),2) *yk+1 +(xx-xk)* pow(xx-xk+1)/(xk-xk+1),2) *mk+(xx-xk+1)* pow(xx-xk)/(xk+1-xk),2) *mk+1;cout << output <<endl;break;delete x;delete y; delete a; delete b; delete a1;delete b1; delete h;

7、 delete m;运行结果截图:2.三次样条插值(初值条件2):P52.10、给定函数y=fx的函数表和边界条件s'0.25=1,s'0.53=0.6868,求三次样条插值函数s(x),并求f(0.35)的近似值。函数表x0.250.30.390.450.53y=fx0.50.54770.62450.67080.728源代码:yangtiao.cpp(同上)运行结果截图:3.自动选取步长梯形法:P977、使用自动选取步长梯形法计算积分0121+t2dt的近似值。(给定=0.01)源代码:SelfSelLength.cpp#include<iostream.h>#i

8、nclude<math.h>double fun(double a)return 2/( 1+a*a );double SelfSelLength(double R_a,double R_b,double e)double h = (R_b-R_a)/2;double R1 =(fun(R_a)+fun(R_b) * h;int n = 1;double R0;double S;double E;do /每当误差值不符合要求时,计算下一个result值R0 = R1;S = 0;for (int k =1 ;k <= n; k+ )S = S+fun( R_a + (2*k-

9、1)*h/n);R1 = R0/2 + S * h/n;E = fabs(R1 - R0);n = 2*n;while(E > 3*e);return R1;void main()double a,b,e;cout << "请依次输入待求积分函数的下界a、上界b 及 精度要求e:" << endl;cin >> a >> b >> e;cout <<"自动选取步长梯形法可求得积分:"<< SelfSelLength (a,b,e)<<endl;运行结果截

10、图:4.Romberg求积法:P978、使用Romberg求积法计算积分19xdx的近似值。(给定=0.01,且取n=1)源代码:Romberg.cpp#include<iostream.h>#include<math.h>static double Tri128128;double fun(double a)return sqrt(a);double Romberg(double R_a,double R_b,double e)Tri00 = (R_b-R_a)/2*(fun(R_a)+fun(R_b);int k = 0;double E;do /每当误差值不符合要

11、求时,计算下一行的Tri值k+;double temp = 0;/计算T0k的数值for (int i = 1 ; i<=pow(2,k-1) ;i+)temp = temp + fun(R_a + (2*i-1)* (R_b - R_a)/pow(2,k);Tri0k = 0.5 * (Tri0k-1 + (R_b-R_a)/pow(2,k-1) * temp);for (int m = 1 ; m <= k ; m +)Trimk-m = ( pow(4,m)*Trim-1k-m+1 - Trim-1k-m ) / (pow(4,m) - 1);E = fabs(Trik0 -

12、 Trik-10);while(E > e);return Trik0;void main()double a,b,e;cout << "请依次输入待求积分函数的下界a、上界b 及 精度要求e:" << endl;cin >> a >> b >> e;cout <<"按Romberg求积法可求得积分:"<< Romberg (a,b,e)<<endl;运行结果截图:5.列主元高斯消去法:测试矩阵为:2-100-12-100-12-100-12×

13、x1x2x3x4 = 1010源代码:Guess_Elimination.cpp/列主元高斯消去法#include<iostream.h>#include<math.h>#define N 4 /矩阵的维数,可按需更改static double ANN = 2,-1,0,0,-1,2,-1,0,0,-1,2,-1,0,0,-1,2;/系数矩阵static double BN=1,0,1,0; /右端项static double XN; int i,j,k; /计数器void main()for(k = 0; k < N-1 ;k+)/选取最大主元int index

14、 = k;for(i = k; i< N ;i+)if(fabs(Aindexk) < fabs(Aik)index = i;/交换行double temp;for( i = k ; i < N ;i+ ) temp = Aindexi; Aindexi = Aki; Aki = temp;temp = Bindex;Bindex = Bk;Bk = temp;for(i = k+1; i<N; i+)double T = Aik/Akk;Bi = Bi - T * Bk;for ( j = k+1 ; j < N ; j+ )Aij = Aij - T * Ak

15、j;XN-1 = BN-1/AN-1N-1;for (i = N-2; i >=0 ; i-)double Temp = 0;for (int j = i+1; j<N ;j+)Temp = Temp + Aij * Xj;Xi = (Bi - Temp) /Aii;cout << "线性方程组的解(X1,X2,X3.Xn)为:"<<endl;for( i = 0; i < N ;i+)cout << Xi <<" "运行结果截图:6.列主元LU分解法:测试矩阵为:2-100-12-100

16、-12-100-12×x1x2x3x4 = 1010源代码:LU_Decomposition.cpp#include<iostream.h>#include<math.h>#define N 4 /矩阵维数,可自定义static double ANN; /系数矩阵static double BN; /右端项static double YN; /中间项static double XN; /输出static double SN; /选取列主元的比较器int i,j,k; /计数器void main()cout << "请输入线性方程组(ai1

17、,ai2,ai3.ain, yi):"<<endl;for ( i = 0; i < N ;i+)for (int j = 0; j< N ;j+ )cin >> Aij;cin >>Bi;for (k = 0 ; k < N; k+)/选列主元int index = k;for (i = k ; i < N; i+)double temp = 0;for (int m = 0 ; m < k ;m+)temp = temp + Aim*Amk;Si = Aik - temp;if(Sindex < Si)ind

18、ex = i;/交换行double temp;for( i = k ; i < N ;i+ ) temp = Aindexi; Aindexi = Aki; Aki = temp;temp = Bindex;Bindex = Bk;Bk = temp;/ 构造L、U矩阵for (j = k ; j < N; j+)double temp = 0;for (int m = 0 ;m < k; m+ )temp = temp + Akm * Amj;Akj = Akj - temp; /先构造U一行的向量for( i = k+1; i < N; i+)double temp

19、 = 0;for (int m =0 ; m < k; m+ )temp = temp + Aim * Amk;Aik = (Aik - temp)/Akk; /再构造L一列的向量/求解LY = BY0 = B0;for (i = 1; i < N ; i+)double temp = 0;for (int j =0 ; j < i; j+ )temp = temp + Aij * Yj;Yi = Bi - temp;/求解UX = YXN-1 = YN-1/AN-1N-1;for (i = N-2 ; i >= 0 ; i- )doubletemp = 0;for (

20、int j =i+1 ; j < N; j+ )temp = temp + Aij * Xj;Xi = (Yi - temp)/Aii;/打印Xcout << "线性方程组的解(X1,X2,X3.Xn)为:"<<endl;for( i = 0; i < N ;i+)cout << Xi <<" "运行结果截图:7.简单迭代法(Jacobi迭代):测试矩阵为:2-100-12-100-12-100-12×x1x2x3x4 = 1010 取精度为esp = 0.001,最大迭代次数M =

21、100源代码:Jacobi.cpp#include<iostream.h>#include<math.h>#define N 4 /矩阵的维数,可按需更改static double ANN = 2,-1,0,0,-1,2,-1,0,0,-1,2,-1,0,0,-1,2;/系数矩阵static double BN=1,0,1,0; /右端项static double YN; /输出比较项static double YN; static double XN; /输出项static double GN; /X = BX' + G的G矩阵int i,j,k; /计数器d

22、ouble eps = 0.001;int M = 100;bool distance() /求两输出项的差的范数是否满足精度要求double temp = 0;for (i = 0 ;i< N ; i+)temp = temp + fabs(Xi - Yi);if (temp > eps) return false;elsereturn true; /满足精度要求则结束程序void main() /形成迭代矩阵B,存放到A中for (i = 0 ;i< N;i+)if (fabs(Aii) < eps)cout <<"打印失败"<

23、<endl;return;double T = Aii;for ( j = 0 ; j< N;j+)Aij = -Aij/T;Aii = 0;Gi = Bi/T;int counter = 0;while (counter < M)/迭代for (i = 0;i < N; i+)double temp = 0;for (j = 0;j<N; j+)temp = temp + Aij*Yj;Xi = Gi + temp;if (distance()=true)break;else/交换X,Y向量;for( i = 0; i < N ;i+)Yi = Xi;co

24、unter+;/打印Xcout << "迭代次数为:"<<counter<<"次。该线性方程组的解(X1,X2,X3.Xn)为:"<<endl;for( i = 0; i < N ;i+)cout << Xi <<" "运行结果截图:8.Seidel迭代:测试矩阵为:2-100-12-100-12-100-12×x1x2x3x4 = 1010 取精度为esp = 0.001,最大迭代次数M = 100源代码:Seidel.cpp#include&l

25、t;iostream.h>#include<math.h>#define N 4 /矩阵的维数,可按需更改static double ANN = 2,-1,0,0,-1,2,-1,0,0,-1,2,-1,0,0,-1,2;/系数矩阵static double BN=1,0,1,0; /右端项static double YN; /输出比较项static double XN; /输出项static double GN; /X = BX' + G的G矩阵int i,j,k; /计数器double eps = 0.001;int M = 100;bool distance()

26、 /求两输出项的差的范数是否满足精度要求double temp = 0;for (i = 0 ;i< N ; i+)temp = temp + fabs(Xi - Yi);if (temp > eps) return false;elsereturn true; /满足精度要求则结束程序void main() /形成迭代矩阵B,存放到A中for (i = 0 ;i< N;i+)if (fabs(Aii) < eps)cout <<"打印失败"<<endl;return;double T = Aii;for ( j = 0 ;

27、j< N;j+)Aij = -Aij/T;Aii = 0;Gi = Bi/T;int counter = 0;while (counter < M)/迭代for (i = 0;i < N; i+)double temp = 0;for (j = 0;j<N; j+)temp = temp + Aij*Xj;Xi = Gi + temp;if (distance()=true)break;else/交换X,Y向量;for( i = 0; i < N ;i+)Yi = Xi;counter+;cout << "迭代次数为:"<&l

28、t;counter<<"次。该线性方程组的解(X1,X2,X3.Xn)为:"<<endl;for( i = 0; i < N ;i+)cout << Xi <<" "9.松弛法(SOR迭代)测试矩阵为: 取松弛系数w = 1.462-100-12-100-12-100-12×x1x2x3x4 = 1010 取精度为esp = 0.001,最大迭代次数M = 100源代码:SOR.cpp#include<iostream.h>#include<math.h>#define N 4 /矩阵的维数,可按需更改static double ANN = 2,-1,0,0,-1,2,-1,0,0,-1,2,-1,0,0,-1,2;/系数矩阵static double BN = 1,0,1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论