




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、北京理工大学北京理工大学2009-2010学年第二学期学年第二学期柱体体积柱体体积=底面积底面积高高特点特点:平顶:平顶.柱体体积柱体体积=?特点特点:曲顶:曲顶.),(yxfz D曲顶柱体的体积曲顶柱体的体积一、问题的提出一、问题的提出播放播放 求曲顶柱体的体积采用求曲顶柱体的体积采用 “分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用 “分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用 “分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的
2、方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用 “分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用 “分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用 “分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示 求曲顶柱体的体积采用求曲顶柱体的体积采用 “分割、求和分割、求和、取极限、取极限”的方法,如下动画演示的方法,如下动画演示步骤如下:步骤如下:用若干个小平用若干个小平顶柱体体积之顶柱体体积之和近似表示曲和近似
3、表示曲顶柱体的体积,顶柱体的体积,xzyoD),(yxfz i),(ii先分割曲顶柱体的底,先分割曲顶柱体的底,并取典型小区域,并取典型小区域,.),(lim10iiniifV 曲顶柱体的体积曲顶柱体的体积 的的直直径径ini 1max 设设有有一一平平面面薄薄片片,占占有有xoy面面上上的的闭闭区区域域D,在在点点),(yx处处的的面面密密度度为为),(yx ,假假定定),(yx 在在D上上连连续续,平平面面薄薄片片的的质质量量为为多多少少?求平面薄片的质量求平面薄片的质量i),(ii将薄片分割成若干小块,将薄片分割成若干小块,取典型小块,将其近似取典型小块,将其近似看作均匀薄片,看作均匀薄
4、片, 所有小块质量之和所有小块质量之和近似等于薄片总质量近似等于薄片总质量.),(lim10iiniiM xyo二、二重积分的概念二、二重积分的概念(1) 在二重积分的定义中,对闭区域的划分是在二重积分的定义中,对闭区域的划分是任意的任意的.(2)当当),(yxf在在闭闭区区域域上上连连续续时时,定定义义中中和和式式的的极极限限必必存存在在,即即二二重重积积分分必必存存在在.对二重积分定义的说明:对二重积分定义的说明: 在直角坐标系下用平在直角坐标系下用平行于坐标轴的直线网来划行于坐标轴的直线网来划分区域分区域D, DDdxdyyxfdyxf),(),(dxdyd 故二重积分可写为故二重积分可
5、写为xyo则面积元素为则面积元素为、上上可可积积。在在区区域域则则上上连连续续,在在平平面面有有界界闭闭区区域域若若DyxfDyxf),(),(、三、三、二重积分的存在性及几何意义二重积分的存在性及几何意义二重积分存在的充分条件二重积分存在的充分条件上上可可积积。在在区区域域),则则在在每每个个子子区区域域上上都都连连续续分分成成有有限限个个子子区区域域,使使分分片片连连续续(即即可可把把上上有有界界,并并且且在在平平面面有有界界闭闭区区域域若若DyxfyxfDDyxf),(),(),(二重积分的几何意义二重积分的几何意义当被积函数大于零时,二重积分是柱体当被积函数大于零时,二重积分是柱体的体
6、积的体积当被积函数小于零时,二重积分是柱体当被积函数小于零时,二重积分是柱体的体积的负值的体积的负值性质性质当当 为常数时为常数时,k.),(),( DDdyxfkdyxkf 性质性质 Ddyxgyxf ),(),(.),(),( DDdyxgdyxf (二重积分与定积分有类似的性质)(二重积分与定积分有类似的性质)四、二重积分的性质四、二重积分的性质性质性质对区域具有可加性对区域具有可加性.),(),(),(21 DDDdyxfdyxfdyxf 性质性质 若若 为为D的面积,的面积,.1 DDdd 性质性质 若在若在D上上),(),(yxgyxf .),(),( DDdyxgdyxf 特殊地
7、特殊地.),(),( DDdyxfdyxf )(21DDD 则有则有 设设M、m分分别别是是),(yxf在在闭闭区区域域 D 上上的的最最大大值值和和最最小小值值, 为为 D 的的面面积积,则则性质性质性质性质(二重积分中值定理)(二重积分中值定理) DMdyxfm),( ),(),(fdyxfD(二重积分估值不等式)(二重积分估值不等式)性质性质 8.d2dDDy)f(x, =y)f(-x,xy)(x,Dy)f(x,yD 0;dy)f(x,- =y)f(-x,xy)f(x,Dy)f(x,yD11 DDDy)f(x,y)f(x,则,满足函数,即是关于f 上可在轴对称,函数关于设区域y)f(x,
8、,则即满满是奇函数,关于 上可积可在轴对称,函数关于设区域一半区域,一半区域,的右边的右边是是并设并设偶偶积,积,如果如果.d2dDDy)f(x, =f(x,-y)yy)(x,Dy)f(x,xD 0;dy)f(x,- =f(x,-y)yy)f(x,Dy)f(x,xD22 DDDy)f(x,y)f(x,则,满足函数,即是关于f 上可在轴对称,函数关于设区域y)f(x,,则即满是奇函数,关于 上可积可在轴对称,函数关于设区域一半区域,一半区域,的上边的上边是是并设并设偶偶积,积,足足如果如果在在D上上 2220ayx ,12220ayxeee 由由性性质质 6 知知,222)(aDyxede 解解
9、 deDyx)(22 ab.2aeab ab区域面积区域面积2 ,16)(1),(2 yxyxf在在D上上),(yxf的的最最大大值值)0(41 yxM),(yxf的的最最小小值值5143122 m)2, 1( yx 故故4252 I. 5 . 04 . 0 I解解当当1 yxr时时, 1)(0222 yxyx故故 0)ln(22 yx;又又当当 1 yx时时, 0)ln(22 yx于于是是0)ln(122 yxrdxdyyx.解解解解三三角角形形斜斜边边方方程程2 yx在在 D 内内有有 eyx 21,故故 1)ln( yx,于于是是 2)ln()ln(yxyx ,因因此此 Ddyx )ln
10、( Ddyx 2)ln(.oxy121D二重积分的定义二重积分的定义二重积分的性质二重积分的性质二重积分的几何意义二重积分的几何意义(曲顶柱体的体积)(曲顶柱体的体积)(和式的极限)(和式的极限)五、小结五、小结二重积分的存在性二重积分的存在性作业作业 P1492,3,5,6思考题思考题 将二重积分定义与定积分定义进行比较,将二重积分定义与定积分定义进行比较,找出它们的相同之处与不同之处找出它们的相同之处与不同之处. 定积分与二重积分都表示某个和式的极限定积分与二重积分都表示某个和式的极限值,且此值只与被积函数及积分区域有关不值,且此值只与被积函数及积分区域有关不同的是定积分的积分区域为区间,
11、被积函数为同的是定积分的积分区域为区间,被积函数为定义在区间上的一元函数,而二重积分的积分定义在区间上的一元函数,而二重积分的积分区域为平面区域,被积函数为定义在平面区域区域为平面区域,被积函数为定义在平面区域上的二元函数上的二元函数思考题解答思考题解答练练 习习 题题4 4、 Ddyx )sin(22_ _ _ _ _ _ _ _ _ _ _ , ,其其中中 是是圆圆域域 2224 yx的的面面积积 , , 16. .二、二、 利用二重积分定义证明利用二重积分定义证明: : DDdyxfkdyxkf ),(),(.(.(其中其中k为常数为常数) )三三、 比比较较下下列列积积分分的的大大小小: : 1 1、 DDdyxdyx 322)()(与与, ,其其中中D是是由由圆圆 2)1()2(22 yx所所围围成成 . . 2 2、 dyxdyxD2)ln()ln(与与, ,其其中中D是是矩矩形形 闭闭区区域域: :10 , 53 yx . .四、估计积分四、估计积分 DdyxI )94(22的值的值, ,其中其中D是圆是圆 形区域形区域
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门店合伙经营合同协议
- 非标卷材出售合同协议
- 阿克苏财务咨询合同协议
- 顺义煤改气合同协议
- 门面经营转让合同协议
- 四联村土地承包经营权转包(租赁)合同5篇
- 青岛啤酒协议店合同
- 防水胶垫采购合同协议
- 飞机涂装承包合同协议
- 集体协议合同书
- ICD-10疾病编码完整版
- 肩关节超声检查
- 毕业论文-中小企业防火墙的应用
- 可穿戴式设备安全可靠性技术规范 腕戴式设备
- 内科学动脉粥样硬化和冠状动脉粥样硬化性心脏病
- ×××章程修订对比表
- 《运算的意义》(教学设计)-2023-2024学年六年级下册数学北师大版
- 高效养中蜂关键技术
- 广州小学六年级英语下册知识点归纳和习题(全册)
- (正式版)JTT 1482-2023 道路运输安全监督检查规范
- MH-T 5035-2017民用机场高填方工程技术规范
评论
0/150
提交评论