数字滤波器设计_第1页
数字滤波器设计_第2页
数字滤波器设计_第3页
数字滤波器设计_第4页
数字滤波器设计_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数字滤波器概述 一、数字滤波器的基本概念信号处理最广泛的应用是滤波。数字滤波,是指输入、输出均为离散时间信号,利用离散时间系统特性对输入信号进行加工和变换,改变输入序列的频谱或信号波形,让有用频率的信号分量输出,抑制无用的信号分量输入。或者说,通过一定运算关系改变输入信号所含频率成分的相对比例或者滤除某些频率成分的算法。数字滤波器是一个离散时间系统。应用数字滤波器处理模拟信号时,首先须对输入模拟信号进行限带、抽样和模数转换。数字滤波器输入信号的抽样率应大于被处理信号带宽的两倍。数字滤波器的频率响应具有以抽样频率为间隔的周期重复特性,且以折叠频率(即二分之一抽样频率点)呈镜像对称。为得到模拟信号

2、,数字滤波器处理的输出数字信号须经数模转换、平滑。数字滤波器具有高精度、高可靠性、可程控改变特性或复用、便于集成等优点。数字滤波器在语声信号处理、图像信号处理、医学生物信号处理以及其他应用领域(如通信、雷达、声纳、仪器仪表和地震勘探等)都得到了广泛的应用。 数字滤波器有低通、高通、带通、带阻和全通等类型。它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。如果数字滤波器的内部参数不随时间而变化,则称为时不变的,否则为时变的。如果数字滤波器在某一给定时刻的响应与在此时刻以后的激励无关,则称为因果的,否则为非因果的。如果数字滤波器对单一或多个激励信号的响应满足线性条件,则称为线性的,否则

3、为非线性的。应用最广的是线性、时不变数字滤波器。二、数字滤波器的基本结构作为线形时不变系统的数字滤波器可以用系统函数来表示,而实现一个系统函数表达式所表示的系统可以用两种方法:一种方法是采用计算机软件实现;另一种方法是用加法器、乘法器、和延迟器等组件设计出专用的数字硬件系统,即硬件实现。不论软件实现还是硬件实现,在滤波器设计过程中,由同一系统函数可以构成很多不同的运算结构。对于无限精度的系数和变量,不同结构可能是等效的,与其输入和输出特性无关;但是在系数和变量精度是有限的情况下,不同运算结构的性能就有很大的差异。因此,有必要对离散时间系统的结构有一基本认识。在实际应用中,多处情况是利用数字滤波

4、器来处理模拟信号。处理模拟信号的数字滤波器基本结构如图1所示:抽样量化变换器图1 处理模拟信号的数字滤波器基本结构在图1中,输入端接入一个低通滤波器,其作用是对输入信号的频率进行限制,以避免频谱混叠,因此称为输入抗“混叠”滤波器;在输出的端也接一个低通滤波器,以便将变换器输出的模拟量良好地恢复成连续时间信号。用数字滤波器处理模拟信号,应首先将信号经过抗混叠滤波器的预处理。它的幅频特性为 信号经过产生,使的频谱的频带限制在范围之内,这样就可以避免“混叠”发生。 所谓数字滤波器实质上是一种运算过程-用来描述离散系统输入与输出关系的差分方程的计算或卷积计算。所谓数字滤波器的设计,就是根据要求选择系统

5、或,使通过系统时,对其波形和频谱进行加工,获得人们所需要的信号。三、数字滤波器的设计原理数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。IIR滤波器的特征是,具有无限持续时间冲激响应。这种滤波器一般需要用递归模型来实现,因而有时也称之为递归滤波器。FIR滤波器的冲激响应只能延续一定时间,在工程实际中可以采用递归的方式实现,也可以采用非递归的方式实现。数字滤波器的设计方法有多种,如双线性变换法、窗函数设计法、插值逼近法和Chebyshev逼近法等等。随着MATLAB软件尤其是MATLAB的信号处理工作箱的不断完善,不仅数字滤波

6、器的计算机辅助设计有了可能,而且还可以使设计达到最优化。基本步骤如下:(1)确定指标(2)逼近(3)性能分析和计算机仿真。四、数字滤波器的性能指标我们在进行数字滤波器设计时,需要确定其性能指标。一般来说,数字滤波器的性能要求往往以频率响应的幅度特性的允许误差来表征。以低通滤波器特性为例,频率响应有通带、过渡带及阻带三个范围。在通带内:  1- AP| H(ej)| 1 |c在阻带中: |H(ej)| Ast st |c其中c 为通带截止频率, st为阻带截止频率,Ap为通带误差, Ast为阻带误差。 图2低通滤波器频率响应幅度特性的容限图与模拟滤波器类似,数字滤波器按频率特

7、性划分为低通、高通、带通、带阻、全通等类型,由于数字滤波器的频率响应是周期性的,周期为2。各种理想数字滤波器的幅度频率响应如图所示:图3、 各种理想数字滤波器的幅度频率响应一般来说,数字滤波器可以用N阶差分方程表示,即 (2-1)在离散域中,上式可以表示成系统函数形式 (2-2)其中,由式(a)、式(b)可知,该传递函数的特性仅取决于其中的参数,也就是说该数字滤波器的特性是由参数、来确定的。五、IIR滤波器IIR滤波器可以用系统函数表示为: (2-3) 由这样的系统函数可以得到表示系统输入与输出关系的常系数线形差分程为: (2-4) 可见数字滤波器的功能就是把输入序列x(n)通过一定的运算变换

8、成输出序列y(n)。不同的运算处理方法决定了滤波器实现结构的不同。无限冲激响应滤波器的单位抽样响应h(n)是无限长的,其差分方程如(d)式所示,是递归式的,即结构上存在着输出信号到输入信号的反馈,其系统函数具有(c)式的形式,因此在z平面的有限区间(0<z<)有极点存在。前面已经说明,对于一个给定的线形时不变系统的系统函数,有着各种不同的等效差分方程或网络结构。由于乘法是一种耗时运算,而每个延迟单元都要有一个存储寄存器,因此采用最少常熟乘法器和最少延迟支路的网络结构是通常的选择,以便提高运算速度和减少存储器。然而,当需要考虑有限寄存器长度的影响时,往往也采用并非最少乘法器和延迟单元

9、的结构。1、IIR滤波器实现的基本结构有:(1)IIR滤波器的直接型结构;优点:延迟线减少一半,变为N 个,可节省寄存器或存储单元;缺点:其它缺点同直接I型。  通常在实际中很少采用上述两种结构实现高阶系统,而是把高阶变成一系列不同组合的低阶系统(一、二阶)来实现。(2)IIR滤波器的级联型结构;特点:· 系统实现简单,只需一个二阶节系统通过改变输入系数即可完成; · 极点位置可单独调整; · 运算速度快(可并行进行); · 各二阶网络的误差互不影响,总的误差小,对字长要求低。 缺点:不能直接调整零点,因多个二阶节的零点并不是整个系统函数的零点

10、,当需要准确的传输零点时,级联型最合适。(3)IIR滤波器的并联型结构。优点:· 简化实现,用一个二阶节,通过变换系数就可实现整个系统; · 极、零点可单独控制、调整,调整1i、2i只单独调整了第i对零点,调整1i、2i则单独调整了第i对极点; · 各二阶节零、极点的搭配可互换位置,优化组合以减小运算误差; · 可流水线操作。 缺点:二阶电平难控制,电平大易导致溢出,电平小则使信噪比减小。 a、直接型 b、并联型c、 串联型图4、IIR滤波器的基本结构2、IIR数字滤波器的设计方法目前,IIR数字滤波器设计最通用的方法是借助于模拟滤波器的设计方法。模拟滤

11、波器设计已经有了一套相当成熟的方法,它不但有完整的设计公式,而且还有较为完整的图表供查询,因此,充分利用这些已有的资源将会给数字滤波器的设计带来很大方便,IIR数字滤波器的设计步骤是:(1)按一定规则将给出的数字滤波器的技术指标转换为模拟滤波器的技术指标;(2)根据转换后的技术指标设计模拟低通滤波器H(s);(3)在按一定规则将H(s)转换为H(z)。若所设计的数字滤波器是低通的,那么上述设计工作可以结束,若所设计的是高通、带通或者带阻滤波器,那么还有步骤:(4)将高通、带通或者带阻数字滤波器的技术指标先转化为低通滤波器的技术指标,然后按上述步骤(2)设计出模拟低通滤波器H(s),再由冲击响应

12、不变法或双线性变换将H(s)转换为所需的H(z)。s - z 映射的方法有:冲激响应不变法、阶跃响应不变法、双线性变换法等。下面讨论双线性变换法。双线性变换法是指首先把s 平面压缩变换到某一中介平面s1 的一条横带(宽度为2T,即从- T到T) ,然后再利用的关系把s1平面上的这条横带变换到整个z 平面。这样s 平面与z 平面是一一对应关系, 消除了多值变换性, 也就消除了频谱混迭现象。s 平面到z 平面的变换可采用 (2-5) (2-6)令 ,有: (2-7)从s1 平面到z 平面的变换,即 (2-8)代入上式,得到: (2-9) 一般来说,为使模拟滤波器的某一频率与数字滤波器的任一频率有对

13、应关系,可引入常数c, (2-10)则 (2-11) 这种s 平面与z 平面间的单值映射关系就是双线性变换。有了双线性变换,模拟滤波器的数字化只须用进行置换。六、 FIR滤波器FIR滤波器的单位抽样响应为有限长度,一般采用非递归形式实现。通常的FIR数字滤波器有横截性和级联型两种。1、FIR滤波器实现的基本结构有:(1)FIR滤波器的横截型结构:表示系统输入输出关系的差分方程可写作:  (2-12)     直接由差分方程得出的实现结构如图2-2所示:图2-2、 横截型(直接型卷积型)若h(n)呈现对称特性,即此FIR滤波器具有线性相位,则可以简化加横截

14、型结构,下面分情况讨论:图5 N为奇数线形相位FIR滤波器实现结构 图6 N为偶数线性相位FIR滤波器实现结构(2)FIR滤波器的级联型结构将H(z)分解成实系数二阶因子的乘积形式: (2-13)     这时FIR滤波器可用二阶节的级联结构来实现,每个二阶节用横截型结构实现。如图所示:图7、 FIR滤波器的级联结构这种结构的每一节控制一对零点,因而在需要控制传输零点时可以采用这种结构。2、FIR数字滤波器的设计方法IIR滤波器的优点是可利用模拟滤波器设计的结果,缺点是相位是非线性的,若需要线性相位,则要用全通网络进行校正。FIR滤波器的优点是可方便地实现线性相位

15、。 FIR滤波器单位冲激响应h(n)的特点:其单位冲激响应h(n)是有限长(),系统函数为: (2-14)在有限Z平面有(N-1)个零点,而它的(N-1)个极点均位于原点z=0处。Fir滤波器线性相位的特点:  如果FIR滤波器的单位抽样响应h(n)为实数,而且满足以下任一条件:偶对称h(n)h(N-1-n) 、奇对称h(n)-h(N-1-n),其对称中心在n(N-1)/2处,则滤波器具有准确的线性相位。窗函数设计法:   一般是先给定所要求的理想滤波器频率响应,由导出,我们知道理想滤波器的冲击响应是无限长的非因果序列,而我们要设计的是是有限长的FIR滤

16、波器,所以要用有限长序列来逼近无限长序列,设:(2-15)常用的方法是用有限长度的窗函数w(n)来截取 即:(2-16) 这里窗函数就是矩形序列RN(n),加窗以后对理想低通滤波器的频率响应将产生什么样的影响呢?根据在时域是相乘关系,在频域则是卷积关系: (2-17)其中,为矩形窗谱, 是FIR滤波器频率响应.  通过频域卷积过程看的幅度函数H()的起伏现象,可知,加窗处理后,对理想矩形的频率响应产生以下几点影响:(1)使理想频率特性不连续点处边沿加宽,形成一个过渡带,其宽度等于窗的频率响应的主瓣宽度。(2)在截止频率的两边的地方即过渡带的两边,出现最大的肩峰值,肩峰的两侧形成起伏振

17、荡,其振荡幅度取决于旁瓣的相对幅度,而振荡的多少,则取决于旁瓣的多少。(3)改变N,只能改变窗谱的主瓣宽度,改变的坐标比例以及改变的绝对值大小,但不能改变主瓣与旁瓣的相对比例(此比例由窗函数的形状决定)。(4)对窗函数的要求:a、窗谱主瓣尽可能窄,以获取较陡的过渡带;b、尽量减小窗谱的最大旁瓣的相对幅度:即能量集中于主瓣,使肩峰和波纹减小,增大阻带的衰减。频率采样法:窗函数设计法是从时域出发,把理想的hd(n)用一定形状的窗函数截取成有限长的h(n),来近似理想的hd(n),这样得到的频率响应逼近于所要求的理想的频率响应。频率抽样法则是从频域出发,把给定的理想频率响应 加以等间隔抽样得到 ,然

18、后以此 作为实际FIR滤波器的频率特性的抽样值H(k),即(2-18) 知道H(k)后,由DFT定义可唯一确定有限长序列 h(n),利用这N个频域抽样值H(k)同样利用频率内插公式可得FIR滤波器的系统函数H(z),及频率响应 ,即:     频率抽样法内插公式: (2-19) 频率抽样法小结  优点:可以在频域直接设计,并且适合于最优化设计。  缺点:抽样频率只能等于 2/N 的整数倍,或等于2/N 的整数倍加上/N。因而不能确保截止频率 的自由取值,要想实现自由地选择截止频率,必须增加抽样点数N,但这又使计算量

19、增大。 为了提高逼近质量,减少通带边缘由于抽样点的陡然变化而引起的起伏振荡。有目的地在理想频率响应的不连续点的边缘,加上一些过渡的抽样点,增加过渡带,减少起伏振荡。七、IIR滤波器与FIR滤波器的分析比较前面已经介绍了IIR和FIR数字滤波器的设计方法,选择哪一种滤波器取决于每种类型滤波器的优点在设计中的重要性。为了能在实际工作中恰当地选用合适的滤波器,现将两种滤波器特点比较分析如下:(1) 选择数字滤波器是必须考虑经济问题,通常将硬件的复杂性、芯片的面积或计算速度等作为衡量经济问题的因素。在相同的技术指标要求下,由于IIR数字滤波器存在输出对输入的反馈,因此可以用较少的阶数来满足要求,所用的

20、存储单元少,运算次数少,较为经济。例如,用频率抽样法设计一个阻带衰减为20dB的FIR数字滤波器,要33阶才能达到要求,而用双线性变换法只需45阶的切比雪夫IIR滤波器就可达到同样的技术指标。这就是说FIR滤波器的阶数要高510倍左右。(2) 在很多情况下,FIR数字滤波器的线性相位与它的高阶数带来的额外成本相比是非常值得的。对于IIR滤波器,选择性越好,其相位的非线性越严重。如果要使IIR滤波器获得线性相位,又满足幅度滤波器的技术要求,必须加全通网络进行相位校正,这同样将大大增加滤波器的阶数。就这一点来看,FIR滤波器优于IIR滤波器。(3) FIR滤波器主要采用非递归结构,因而无论是理论上

21、还是实际的有限精度运算中他都是稳定的,有限精度运算误差也较小。IIR滤波器必须采用递归结构,极点必须在z平面单位圆内才能稳定。对于这种结构,运算中的舍入处理有时会引起寄生振荡。(4) 对于FIR滤波器,由于冲激响应是有限长的,因此可以用快速傅里叶变换算法,这样运算速度可以快得多。IIR滤波器不能进行这样的运算。(5) 从设计上看,IIR滤波器可以利用模拟滤波器设计的现成的闭合公式、数据和表格,可以用完整的设计公式来设计各种选频滤波器。一旦选定了已知的一种逼近方法(如巴特奥兹,切比雪夫等),就可以直接把技术指标带入一组设计方程计算出滤波器的阶次和系统函数的系数(或极点和零点)。FIR滤波器则一般没有现成的设计公式。窗函数法只给出了窗函数的计算公式,但计算通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论