短距离无线数据低功耗传输协议研究_第1页
短距离无线数据低功耗传输协议研究_第2页
短距离无线数据低功耗传输协议研究_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、    短距离无线数据低功耗传输协议研究    短距离无线数据低功耗传输协议研究    类别:无线通信      短距离无线数据传输是一种线缆替代技术,在当前很多领域(如工业生产、医疗监护、科学研究等)都得到了广泛的应用。它的出现,解决了因环境和条件限制而不利于有线布线的问题,同时具有低成本、方便携带等优点。然而由于存在高功耗的缺点,使得这技术在很多供电受限的工业现场应用中受到了很大的限制。本文基于 Freescal

2、e公司的MC13213硬件平台对短距离无线数据的低功耗传输协议进行了研究,在保证数据可靠传输的同时,极大地降低了设备的功耗。 1 主要芯片介绍 MC13213是Freescale公司推出的一款SoC芯片,它主要由微处理器和射频模块两部分组成。微处理器采用8位的HCS08内核,集成了1个 SPI(Serial Peripheral Interface)接口、1个8路的8/10位A/D转换器、2个TPM(Timer/PWM)模块、2个SCI(Serial Communication Interface)接口、2个I2C和1个8路的KBI(Keyboard Interrupt)接口。射频模块的工作频

3、段是2.4 GHz,通过SPI总线与处理器通信。其主要特点有: 采用2.4 GHz频段,其设计构架符合IEEE 802.15.4协议; 接收灵敏度<-92 dBm,发送功率为-28.7+3.4 dBm可调; 拥有015(共16)个可选工作信道; 采用直接序列扩频(direct sequence spread spectrum)的二进制编码方式,增强了抗干扰能力; 采用OQPSK数字相移键控调制技术,大大降低了数据传输的误码率; 采用免冲突的载波检测多址接入(CSMACA)机制,避免了数据传输过程中的冲突。 2 硬件系统设计 如图1所示,整个系统硬件结构由4部分组成:RS232/485总线

4、接口单元、数据处理单元、射频收发单元和电源管理单元。 500)this.width=500" border=0图1 短距离无线数据传输模块硬件结构图 一方面,PC/仪器仪表通过RS232/485总线将数据传送给MCU处理器,处理器将数据包进行适当处理后送给射频模块发送出去;另一方面,射频模块将接收到的数据送给MCU处理器,处理器经过解包处理后再通过RS232/485总线将数据送给PC/仪器仪表。 工业中的仪器仪表大多都采用RS485总线通信方式,因此无线数据传输设备提供RS232/485可选通信接口,既方便连接PC机,又满足了一般仪器仪表的要求,串口波特率为1 200115 200

5、bps可调。 3 软件设计和低功耗通信协议研究 无线数据传输设备的一般工作流程如图2所示。在进行相关初始化之后就进入主循环,对射频模块和串口进行轮询:当射频模块接收到数据包时就进行解包,然后送到RS232/485总线;当串口接收到从RS232/485总线上发来的数据时,就进行相关处理并送入射频模块发送出去。这种轮询的方式结构简单,实现方便。 500)this.width=500" border=0图2 短距离无线传输设备软件流程    然而,在这种工作方式下,射频模块就必须时刻监听信道。在2.7 V工作电压、处理器时钟频率为2 MHz时,MC1

6、3213的射频模块接收工作电流IRF(Rx)37 mA,处理器以及外围器件的工作电流Imcu2 mA,因此设备的正常工作电流I39 mA,这个电流对于一些供电受限的工业应用显然是不能够接受的。为了降低无线传输设备的功耗,需要对设备之间的传输协议作适当的改进。 由于在大部分的时间里设备之间没有进行数据传输,因此射频模块一直处于接收状态是一种资源浪费。而设备本身不知道对方何时有数据传输过来,因此设备之间约定在特定的时间段内进行数据传输,而其余时间休眠。 这样一种约定需要一种同步机制。我们采用信标同步机制:一个设备定时发送一个称为“信标(Beacon)”的数据包,即信标帧。另一个设备通过接收该信标帧

7、来实现同步。我们将发送信标帧的设备称为“主设备”,接收信标帧的设备称为“从设备”。通过信标帧,即可实现从设备和主设备之间的同步。 在该协议中,有3种类型的数据包:信标帧、数据请求帧和数据帧。信标帧和数据帧的帧头包含有是否有数据待传的信息。 实现同步之后,主设备和从设备之间就约定进入休眠时间(Tsleep)。在休眠期间射频模块深度睡眠(虽然关闭射频模块后功耗会更低,但唤醒时间太长),处理器处于超低功耗状态,只有串口处于接收状态。休眠时间结束后,主设备就会醒来,并且射频模块向外发送信标帧。信标发送完后,射频模块立即进入接收状态。从设备从休眠中醒来后立即唤醒射频模块进行信标侦听,当接收到主设备发送过

8、来的信标后,就会判断主设备是否有数据待传。如果有,就向主设备发送数据请求帧;否则,从设备就会将自己串口接收到的数据通过射频模块发送给主设备,直到数据发送结束进入下一个周期的休眠时间(Tsleep)。主设备接收并处理从设备发送的数据帧,并通过数据帧的帧头判断是继续等待还是进入下一周期的休眠时间。当主、从设备都没有数据需要进行传输时,从设备接收到信标后直接进入下一周期的休眠时间,而主设备等待Twait后没有收到从设备的任何数据,也会进入下一个周期的休眠时间。在这种情况下,由于从设备会比主设备早休眠 Twait的时间,因此从设备的休眠时间为Twait+Tsleep。另外为了防止失去同步,从设备醒来后

9、就将射频模块设置为接收状态,直到接收到信标帧,或者超时继续进入休眠。这个超时阈值至少为Tsleep,从而保证了重新同步。如果从设备N次都没有收到信标帧,可以认为周围没有主设备,因此可以进行一次长时间的休眠Thibernate。具体流程如图3所示。    经过该协议优化后,主、从设备在一个周期内的工作状态如图4所示。 改进前的平均工作电流: 500)this.width=500" border=0 500)this.width=500" border=0图4 改进前后主从设备无数据传输时一个周期内的工作状态  

10、60; 改进后的平均工作电流: 500)this.width=500" border=0 表1 2.7 V工作电压下测得的主、从设备工作电流500)this.width=500" border=0 其中: 射频模块接收状态时的工作电流IRF(Rx)37 mA; 射频模块发送状态时的工作电流IRF(Tx)30 mA; 射频模块深度睡眠的工作电流IRF(sleep)35 A; 处理器正常工作电流Imcu2 mA; 处理器休眠工作电流Imcu(sleep)5 A; 射频模块发送1个数据包需要的最大时间Td4 ms。 因此,当Twait=5 ms,Tsleep=200 ms时,I后(主)1.58 mA,I后(从)0.79 mA。远小于改进前的I前39 mA。 4 实验结果和总结 采用了低功耗的传输协议后,在Tsleep分别为200 ms、500 ms和1 s情况下,无数据传输和每10 s互传一个数据包时测量得到的电流如表1所列。可见,采用了低功耗的传输协议后在保证了数据可靠、稳定传输的同时,大大降低了设备的功耗。休眠时间 Tsleep 增大,功耗就会下降

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论