




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、导数与微分在经济中的简单应用一、边际和弹性(一)边际与边际分析边际概念是经济学中的一个重要概念,通常指经济变量的变化率,即经济函数的导数称为边际。而利用导数研究经济变量的边际变化的方法,就是边际分析方法。1、总成本、平均成本、边际成本总成本是生产一定量的产品所需要的成本总额,通常由固定成本和可变成本两部分构成。用c(x)表示,其中x表示产品的产量,c(x)表示当产量为x时的总成本。不生产时,x=0,这时c(x)=c(o),c(o)就是固定成本。平均成本是平均每个单位产品的成本,若产量由x0变化到,则:称为c(x)在内的平均成本,它表示总成本函数c(x)在内的平均变化率。而称为平均成本函数,表示
2、在产量为x时平均每单位产品的成本。例1,设有某种商品的成本函数为:其中x表示产量(单位:吨),c(x)表示产量为x吨时的总成本(单位:元),当产量为400吨时的总成本及平均成本分别为:如果产量由400吨增加到450吨,即产量增加=50吨时,相应地总成本增加量为:这表示产量由400吨增加到450吨时,总成本的平均变化率,即产量由400吨增加到450吨时,平均每吨增加成本13.728元。类似地计算可得:当产量为400吨时再增加1吨,即=1时,总成本的变化为:表示在产量为400吨时,再增加1吨产量所增加的成本。产量由400吨减少1吨,即=-1时,总成本的变化为:表示产量在400吨时,减少1吨产量所减
3、少的成本。在经济学中,边际成本定义为产量增加或减少一个单位产品时所增加或减少的总成本。即有如下定义:定义1:设总成本函数c=c(x),且其它条件不变,产量为x0时,增加(减少)1个单位产量所增加(减少)的成本叫做产量为x0时的边际成本。即:其中=1或=-1。由例1的计算可知,在产量x0=400吨时,增加1吨的产量时,边际成本为13.7495;减少1吨的产量时,边际成本为13.7505。由此可见,按照上述边际成本的定义,在产量x0=400吨时的边际成本不是一个确定的数值。这在理论和应用上都是一个缺点,需要进一步的完善。注意到总成本函数中自变量x的取值,按经济意义产品的产量通常是取正整数。如汽车的
4、产量单位“辆”,机器的产量单位“台”,服装的产量单件“件”等,都是正整数。因此,产量x是一个离散的变量,若在经济学中,假定产量的单位是无限可分的,就可以把产量x看作一个连续变量,从而可以引人极限的方法,用导数表示边际成本。事实上,如果总成本函数c(x)是可导函数,则有:由极限存在与无穷小量的关系可知: (1)其中,当很小时有: (2)产品的增加=1时,相对于产品的总产量而言,已经是很小的变化了,故当=1时(2)成立,其误差也满足实际问题的需要。这表明可以用总成本函数在x0处的导数近似地代替产量为x0时的边际成本。如在例1中,产量x0=400时的边际成本近似地为,即:误差为0.05,这在经济上是
5、一个很小的数,完全可以忽略不计。而且函数在一点的导数如果存在就是唯一确定的。因此,现代经济学把边际成本定义为总成本函数c(x)在x0处的导数,这样不仅克服了定义1边际成本不唯一的缺点,也使边际成本的计算更为简便。定义2:设总成本函数c(x)为一可导函数,称为产量是x0时的边际成本。其经济意义是:近似地等于产量为x0时再增加(减少)一个单位产品所增加(减少)的总成本。若成本函数c(x)在区间I内可导,则为c(x)在区间I内的边际成本函数,产量为x0时的边际为边际成本函数在x0处的函数值。例2:已知某商品的成本函数为: (Q表示产量)求:(1)当Q=10时的平均成本及Q为多少时,平均成本最小?(2
6、)Q=10时的边际成本并解释其经济意义。解:(1)由得平均成本函数为:当Q=10时:记,则令 得:Q=20而,所以当Q=20时,平均成本最小。(2)由得边际成本函数为:则当产量Q=10时的边际成本为5,其经济意义为:当产量为10时,若再增加(减少)一个单位产品,总成本将近似地增加(减少)5个单位。2、总收益、平均收益、边际收益总收益是生产者出售一定量产品所得以的全部收入,表示为R(x),其中x表示销售量(在以下的讨论中,我们总是假设销售量、产量、需求量均相等)。平均收益函数为,表示销售量为x时单位销售量的平均收益。在经济学中,边际收益指生产者每多(少)销售一个单位产品所增加(减少)的销售总收入
7、。按照如上边际成本的讨论,可得如下定义。定义3:若总收益函数R(x)可导,称为销售量为x0时该产品的边际收益。其经济意义为在销售量为x0时,再增加(减少)一个单位的销售量,总收益将近似地增加(减少)个单位。称为边际收益函数,且3、总利润、平均利润、边际利润总利润是指销售x个单位的产品所获得的净收入,即总收益与总成本之差,记L(x)为总利润,则: (其中x表示销售量) 称为平均利润函数定义4:若总利润函数L(x)为可导函数,称为L(x)在x0处的边际利润。其经济意义为在销售量为x0时,再多(少)销售一个单位产品所增加(减少)的利润。根据总利润函数,总收益函数、总成本函数的定义及函数取得最大值的必
8、要条件与充分条件可得如下结论。由定义,令结论1:函数取得最大利润的必要条件是边际收益等于边际成本。又由L(x)取得最大值的充分条件:可得:结论2:函数取得最大利润的充分条件是:边际收益等于边际成本且边际收益的变化率小于边际成本的变化率。结论1与结论2称为最大利润原则。例3:某工厂生产某种产品,固定成本2000元,每生产一单位产品,成本增加100元。已知总收益R为年产量Q的函数,且问每年生产多少产品时,总利润最大?此时总利润是多少?解:由题意总成本函数为:从而可得利润函数为:令所以Q=300时总利润最大,此时L(300)=25000,即当年产量为300个单位时,总利润最大,此时总利润为25000
9、元。若已知某产品的需求函数为P=P(x),P为单位产品售价,x为产品需求量,则需求与收益之间的关系为:这时其中为边际需求,表示当需求量为x时,再增加一个单位的需求量,产品价格近似地增加个单位。关于其它经济变量的边际,这里不再赘述。我们以一道例题结束边际的讨论。例4:设某产品的需求函数为,其中P为价格,x为需求量,求边际收入函数以及x=20、50和70时的边际收入,并解释所得结果的经济意义。解:由题设有,于是,总收入函数为:于是边际收入函数为:由所得结果可知,当销售量(即需求量)为20个单位时,再增加销售可使总收入增加,多销售一个单位产品,总收入约增加12个单位;当销售量为50个单位时,总收入的
10、变化率为零,这时总收入达到最大值,增加一个单位的销售量,总收入基本不变;当销售量为70个单位时,再多销售一个单位产品,反而使总收入约减少8个单位,或者说,再少销售一个单位产品,将使总收入少损失约8个单位。(二)弹性与弹性分析弹性概念是经济学中的另一个重要概念,用来定量地描述一个经济变量对另一个经济变量变化的反应程度。1问题的提出设某商品的需求函数为,其中P为价格。当价格P获得一个增量时,相应地需求量获得增量,比值表示Q对P的平均变化率,但这个比值是一个与度量单位有关的量。比如,假定该商品价格增加1元,引起需求量降低10个单位,则;若以分为单位,即价格增加100分(1元),引起需求量降低10个单
11、位,则。由此可见,当价格的计算单位不同时,会引起比值的变化。为了弥补这一缺点,采用价格与需求量的相对增量,它们分别表示价格和需求量的相对改变量,这时无论价格和需求量的计算单位怎样变化,比值都不会发生变化,它表示Q对P的平均相对变化率,反映了需求变化对价格变化的反应程度。2、弹性的定义定义1:设函数在点的某邻域内有定义,且,如果极限存在,则称此极限值为函数在点x0处的点弹性,记为;称比值为函数在之间的平均相对变化率,经济上也叫做点之间的弧弹性。由定义可知:,且当时,有:即点弹性近似地等于弧弹性。如果函数在区间(a、b)内可导,且,则称为函数在区间(a、b)内的点弹性函数,简称为弹性函数。函数在点
12、x0处的点弹性与之间的弧弹性的数值可以是正数,也可以是负数,取决于变量y与变量x是同方向变化(正数)还是反方向变化(负数)。弹性数值绝对值的大小表示变量变化程度的大小,且弹性数值与变量的度量单位无关。下面给出证明。设为一经济函数,变量x与y的度量单位发生变化后,自变量由x变为,函数值由y变为,且,则。证明:即弹性不变。由此可见,函数的弹性(点弹性与弧弹性)与量纲无关,即与各有关变量所用的计量单位无关。这使得弹性概念在经济学中得到广泛应用,因为经济中各种商品的计算单位是不尽相同的,比较不同商品的弹性时,可不受计量单位的限制。下面介绍几个常用的经济函数的弹性。3、需求的价格弹性需求指在一定价格条件
13、下,消费者愿意购买并且有支付能力购买的商品量。消费者对某种商品的需求受多种因素影响,如价格、个人收入、预测价格、消费嗜好等,而价格是主要因素。因此在这里我们假设除价格以外的因素不变,讨论需求对价格的弹性。定义2:设某商品的市场需求量为Q,价格为P,需求函数Q=Q(P)可导,则称为该商品的需求价格弹性,简称为需求弹性,通常记为。需求弹性表示商品需求量Q对价格P变动的反应强度。由于需求量与价格P反方向变动,即需求函数为价格的减函数,故需求弹性为负值,即。因此需求价格弹性表明当商品的价格上涨(下降)1%时,其需求量将减少(增加)约。在经济学中,为了便于比较需求弹性的大小,通常取的绝对值,并根据的大小
14、,将需求弹性化分为以下几个范围。 当=1(即)时,称为单位弹性,这时当商品价格增加(减少)1%时,需求量相应地减少(增加)1%,即需求量与价格变动的百分比相等。 当>1(即)时,称为高弹性(或富于弹性),这时当商品的价格变动1%时,需求量变动的百分比大于1%,价格的变动对需求量的影响较大。 当<1(即)时,称为低弹性(或缺乏弹性),这时当商品的价格变动1%,需求量变动的百分比小于1%,价格的变动对需求量的影响不大。 当=0(即)时,称为需求完全缺乏弹性,这时,不论价格如何变动,需求量固定不变。即需求函数的形式为Q=K(K为任何既定常数)。如果以纵坐标表示价格,横坐标表示需求量,则需
15、求曲线是垂直于横坐标轴的一条直线(如图(1))。 当(即)时,称为需求完全富于弹性。表示在既定价格下,需求量可以任意变动。即需求函数的形式是P=K(K为任何既定常数),这时需求曲线是与横轴平行的一条直线(如图(2))。0PkQ0Q=kPQ 图(1) 图(2)在商品经济中,商品经营者关心的是提价()或降价()对总收益的影响。下面我们就利用弹性的概念,来分析需求的价格弹性与销售者的收益之间的关系。事实上,由于可见,由价格P的微小变化(很小时)而引起的销售收益R=PQ的改变量为由可知,于是当时(单位弹性)收益的改变量是较价格改变量的高阶无穷小,价格的变动对收益没有明显的影响。当(高弹性),需求量增加
16、的幅度百分比大于价格下降(上浮)的百分比,降低价格()需求量增加即购买商品的支出增加,即销售者总收益增加(),可以采取薄利多销多收益的经济策略;提高价格()会使消费者用于购买商品的支出减少,即销售收益减少()。当时,(低弹性)需求量增加(减少)的百分低于价格下降(上浮)的百分比,降低价格()会使消费者用于购买商品的支出减少,即销售收益减少();提高价格会使总收益增加()。综上所述,总收益的变化受需求弹性的制约,随着需求弹性的变化而变化,其关系如图(3)0R|P |<1|P |>1 图(3)例1:设某商品的需求函数为(1)求需求弹性函数及P=6时的需求弹性,并给出经济解释。(2)当P
17、取什么值时,总收益最大?最大总收益是多少?解:(1) 低弹性经济意义为当价格P=6时,若增加1%,则需求量下降1/3%,而总收益增加()。(2)令 故当价格P =12时,总收益最大,最大总收益为72。例2:已知在某企业某种产品的需求弹性在之间,如果该企业准备明年将价格降低10%,问这种商品的需求量预期会增加多少?总收益预期会增加多少?解:由前面的分析可知于是当时当时可见,明年降价10%时,企业销售量预期将增加约13% - 21%;总收益预期将增加约3% - 11%。4、供给的价格弹性定义3:设某商品供给函数可导,(其中P表示价格,Q表示供给量)则称:为该商品的供给价格弹性,简称供给弹性,通常用表示。由于同方向变化,故>0。它表明当商品价格上涨1%时,供给量将增加%。对的讨论,完全类似于需求弹性,这里不再重复。至于其它经济变量的弹性,读者可根据上面介绍的需求弹性与供给弹性,进行类似的讨论。练
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025机械制造行业劳动合同书
- 更改物业用房协议书
- 木床买卖合同协议书
- 游客中心外包协议书
- 校企合作培养协议书
- 日照美食合作协议书
- 模特工作合同协议书
- 无偿领养转卖协议书
- 授权淘宝销售协议书
- 教育机构股份协议书
- 装配式建筑施工技术PPT(高职)完整全套教学课件
- 涉诈风险账户审查表
- 关风器设计说明书
- 2023年副主任医师(副高)-儿童保健(副高)考试历年真题精华集选附答案
- 《庄子过惠子之墓》中考文言文阅读试题2篇(含答案与翻译)
- HT9988详细使用说明书
- 桥式起重机司机(初级)职业技能鉴定考试题库(职校培训)
- 【超星尔雅学习通】世界建筑史网课章节答案
- 认识水拓画完整版
- 儿童督导员儿童主任业务培训
- 高速公路日常养护施工方案
评论
0/150
提交评论