下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆锥曲线与方程复习学案一、知识归纳:名 称椭圆双曲线图 象定 义 平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆即 当22时,轨迹 当22时,轨迹 当22时,轨迹 平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线. 即当22时,轨迹 当22时,轨迹 当22时,轨迹 标准方 程焦点在轴上时: 焦点在轴上时: 注:根据分母的大小来判断焦点在哪一坐标轴上焦点在轴上时: 焦点在轴上时: 常数的关 系 , 最大,最大,渐近线焦点在轴上时: 焦点在轴上时: 椭圆的性质:椭圆方程 (1)范围: ,椭圆落在组成的矩形中。(2)对称性: (3)顶点: 叫椭圆的长轴,长为2a,叫椭圆的
2、短轴,长为2b。(4)离心率:椭圆焦距与长轴长之比。()可以刻画椭圆的扁平程度,越大,椭圆越扁,越小,椭圆越圆.(5)点是椭圆上任一点,是椭圆的一个焦点,则 , (6)点是椭圆上任一点,当点在短轴端点位置时,取最大值.2、直线与椭圆位置关系(1)直线与椭圆的位置关系及判定方法位置关系公共点判定方法相交有两个公共点直线与椭圆方程首先应消去一个未知数得一元二次方程的根的判别式相切有且只有一个公共点相离无公共点(2)弦长公式:设直线交椭圆于则 ,或 3、双曲线的几何性质: (1)顶点 顶点: ,特殊点: 实轴:长为2a,a叫做实半轴长。虚轴:长为2b,b叫做虚半轴长。 双曲线只有两个顶点,而椭圆则有
3、四个顶点,这是两者的又一差异。 (2)渐近线 双曲线的渐近线 (3)离心率 双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围:e>1 (4)等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线。 等轴双曲线的性质:a、渐近线方程为:;b、渐近线互相垂直;c、离心率。 4.抛物线: 图象方程焦点准线抛物线的几何性质(1)顶点:抛物线的顶点就是坐标原点。(2)离心率: 抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示。由抛物线的定义可知,e1。(3)的几何意义:表示焦点到准线的距离. 表示抛物线的通径(过焦点且垂直于轴的弦).(4)若点是抛物线上任意一点,则(
4、5)若过焦点的直线交抛物线于、两点,则弦二重点题型1.圆锥曲线的定义:(1)已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是 ( ) A B C D(2)方程表示的曲线是_2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)已知方程表示椭圆,则的取值范围为_ (2)若,且,则的最大值是_,的最小值是(3)双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_ (4)设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,则C的方程为_3.圆锥曲线的几何性质:(1)若椭圆的离心率,则的值是_ _ (2)以椭圆上一点和椭圆两焦点为顶点的三
5、角形的面积最大值为1时,则椭圆长轴的最小值为_ (3)双曲线的渐近线方程是,则该双曲线的离心率等于_ 4直线与圆锥曲线的位置关系:(1)若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是_(2)直线ykx1=0与椭圆恒有公共点,则m的取值范围是_(3)过双曲线的右焦点直线交双曲线于A,B两点,若AB4,则这样的直线有_ _条5、焦半径(1)已知抛物线方程为,若抛物线上一点到轴的距离等于5,则它到抛物线的焦点的距离等于_;(2)若该抛物线上的点到焦点的距离是4,则点的坐标为_(3)抛物线上的两点A、B到焦点的距离和是5,则线段AB的中点到轴的距离为_6、焦点三角形(
6、椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用定义和正弦、余弦定理求解。(1)短轴长为,离心率的椭圆的两焦点为、,过作直线交椭圆于A、B两点,则的周长为_(2)设P是等轴双曲线右支上一点,F1、F2是左右焦点,若,|PF1|=6,则该双曲线的方程为 7、抛物线中与焦点弦有关的一些几何图形的性质、弦长公式:(1)过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,那么|AB|等于_ (2)过抛物线焦点的直线交抛物线于A、B两点,已知|AB|=10,O为坐标原点,则ABC重心的横坐标为_8、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。(1)如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 (2)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称 9. 离心率的求法 (1)已知双曲线的一条渐近线方程为,则双曲线的离心率为( )A B C D (2)已知、是双曲线()的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年进餐礼仪儿歌真题及答案
- 新疆劳动合同模板格式(3篇)
- 电工常识考试题库及答案
- 线上坟墓购买合同模板(3篇)
- 2025年会务服务接待礼仪考试题及答案
- 2025年互联网安全行业网络安全技术与数据隐私保护策略研究报告及未来发展趋势预测
- 个人努力成长承诺书(6篇)
- 邯郸餐饮安全员考试题库及答案解析
- 老树的故事给我的启示9篇
- 网络硬件设施保养责任承诺书7篇范文
- 危重患者管理制度课件
- 高职院校教师数字能力的现状、挑战与提升策略
- 房地产代建项目实施方案范文
- 蓝天救援队设备管理制度
- 消防维保合同挂靠协议书
- 关于鸽子的课件教学
- 化疗后骨髓抑制个案护理
- 企业内控培训课件模板
- 2025-2030中国中医馆行业发展分析及投资风险与战略研究报告
- 入团考试试题及答案
- 北京税务局股权转让协议
评论
0/150
提交评论