




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、JournalofMathematicalResearch&ExpositionVol.18,No.3,329-334,August1998IterativeConstructionofSolutionstoNonlinearEquationsofStronglyAccretiveOperatorsinBanachSpaces3ZengLuchuan(Inst.ofMath.,FudanUniversity,Shanhai200433)(Dept.ofMath.,ShanghaiNormalUniversity,Shanghai200234)limn=0orlimn=limn=0nnn
2、intheirtheorems.ThesealsoextendTheorems1and2ofDeng6tothep-uniformlysmoothBanachspacesetting.Keywordsstronglyaccretive,strictlypseudocontractive,p-uniformlysmoothBanachspace.ClassificationAMS(1991)47H15,47H05/CCLO177.21.IntroductionandpreliminariesLetTbeanonlinearoperatorwithdomainD(T)andrangeR(T)ina
3、realBanachspace.Tissaidtobeaccretive2iftheinequalityx-yx-y+r(Tx-Ty)monotone3.IfXisaHilbertspacethentheaccretivecondition(1)reducesto(1)holdsforeachxandyinD(T)andforallr0.If(1)holdsonlyforsomer>0,TissaidtobeTx-Ty,x-y03(2)ReceivedMay28,1994.ProjectsupportedbytheScienceandTechnologyDevelopmentFundat
4、ionofShanghaiHigherLearning.329© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.forallx,yinX.Tisaccretiveifandonlyifforanyx,yD(T),thereexistsjJ(x-y)suchthatTx-Ty,j0,whereJ(x)=x33232X3:x,x=x=x,xX,(3)isthenormalizeddualitymappingofXand,denotesthedualitypairingbetweenXandX3
5、.TheaccretiveoperatorswereintroducedindependentlybyBrowder2andKato3in1967.LetCbeanonemptysubsetofarealBanachspaceX.AmappingT:CXissaidtobestronglyaccretiveifforeachx,yinCthereisjJ(x-y)suchthat2Tx-Ty,jkx-y(4)forsomerealconstantk>0.Withoutlossofgenerality,weassumethatk(0,1).LetCbeanonemptysubsetofar
6、ealBanachspacex.AmappingT:CXissaidtobesrictlypseudocontractiveifthereexistst>1suchthattheinequalityx-y(1+r)(x-y)-rt(Tx-Ty)(5)holdsforallx,yinCandr>0.If,intheabovedefinition,t=1,thenTissaidtobeapseudocon2tractivemapping.Recently,Deng6answeredpositivelyProblem2inChidume7,byremovingtherestriction
7、n8studiedboththeMannandtheIshikawaitera2nandlimnn=0.Ontheotherhand,TanandXutionprocessinap-uniformlysmoothBanachspaceXandprovedthatthetwoprocessesconvergestronglytotheuniquesolutionoftheequationTx=fincaseTisaLipschitzianandstronglyaccretiveoperatorfromXtoX,ortotheuniquefixedpointofTincaseTisaLipschi
8、tzianandstrictlypseu2docontractivemappingfromaboundedclosedconvexsubsetCofXintoitself.Hence,TanandXu8gaveaffirmativeanswerstoProblems1and2ofChidume7respectively,andalsoextendedallresultsofChidume7tothep-uniformlysmoothBanachspacesetting.ofsmoothnessofXisdefinedby)=sup(x+y+x-y)-1:x,yX,x=1,y=,x(2>0
9、,andthatXissaidtobeuniformlysmoothiflim0x()/=0.Recallalsothatforarealnum2p)dber1<p2,aBanachspaceXissaidtobep-uniformlysmoothiffor>0wheredx(>0isaconstant.Itisknown(cf.1)thatforaHilbertspaceH,21/2H()=(1+)-1(6)andhenceHis2-uniformlysmooth.Itisalsoknownthatif1<p<2,Lp(orlp)isp-uniformlysmo
10、oth;whileif2p<,Lp(orlp)is2-uniformlysmooth.Xu5gavethefollowingcharacteri2zationforap-uniformlysmoothBanachspace.330© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.Lemma1LetXbeasmoothBanachspaceandpafixednumberin(1,2.Then,Xisp-uni2formlysmoothifandonlyifthereexistsaco
11、nstantdp>0suchthatx+ypxp+py,Jp(x)+dpypforallx,yinX,whereJp(x)isthesubdifferentiableatxofthefunctionalp-1(7)p.ItisknownthatJp(x)=xp-2J(x)forxX,x0,and3p3p-1X3:x,x=x,x=x,xX.WhenxisanLp(orlp)space,theconstantdpin(1.7)hasbeencalculated.Jp(x)=x32.MainresultsTheorem1letxbeap-uniformlysmoothBanachspacewi
12、th1<p2andT:XXbeaLipschitzianandstronglyaccretiveoperatorwithLipschitzconstantL.DefineS:XXbySx=f-Tx+x.Letnn=0andnn=0betwosequencesofrealsin0,1satisfying(i)an=andlimn=0;n=0n(ii)0mintp,np1/)4p2L0(1+L0pforeachn0,whereL0istheLipschitzconstantofSwithL01+L,tpisthe(smaller)solutionoftheequation(8)pk=0(t&
13、gt;0),2andk(0,1),dparetheconstantsappearingin(4)and(7),respectively.Thenforeachx0inXtheIshikawasequencexndefinedbyxn+1=(1-n)xn+nSynandyn=(1-n)xn+nSxn,n0pp-1f(t)=p(p-1)(1-k)t-(1+dpL0)t+convergesstronglytotheuniquesolutionoftheequationTx=f.ProofWefirstobservethattheequationTx=fhasauniquesolutionwhichw
14、edenotebyq.Infact,theexistencefollowsfromMorales4andtheuniquenessfromthestrongaccretivenessofT.Wealsoobservethatforx,yX,Sx-Sy,Jp(x-y)=-Tx-Ty,Jp(x-y)+x-ypp-2p=-x-yTx-Ty,J(x-y)+x-y2-kx-yp-2x-y+x-yp=(1-k)x-yp.Itfollowsthatpxn+1-qp=(1-n)(xn-q)+n(Syn-q)p-1(1-n)pxn-qp+pSyn-q,Jp(x-q)n(1-n)pp(9)+dpnSyn-q.33
15、1© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.SincepSyn-qpL0yn-qpSxn-q,Jp(xn-q)(1-k)xn-qp,pyn-qp=(1-n)(xn-q)+n(Sxn-q)pp-1(1-xn-qp+pSxn-q,Jp(xn-q)n)n(1-n)pp+dpnSxn-qpp-1ppp(1-+p(1-k)+dpL0xn-qn)n(1-n)n)p=tnxn-q,pp-1ppwheretn=(1-+p(1-k)+dpL0n)n(1-n)n,ppppyn-xnp=nxn-Sxn=
16、n(xn-q)+(q-Sxn)ppp2pn(xn-q+Sxn-q)ppp)2p(1+L0nxn-q,Syn-Sxn,Jp(xn-q)L0yn-xnxn-qp-1p1/p2L0xn-qp,n(1+L0)andSyn-q,Jp(xn-q)=Syn-Sxn,Jp(xn-q)+Sxn-q,Jp(xn-q)p1/p(2L0+(1-k)xn-qp,n(1+L0)weobtainfrom(8)pp-1p1/p(1-k+2L0)xn+1-qp(1-+pn)n(1-n)n(1+L0)+dpL0ntn)xn-q.pppSince1<p2,(1-t)p1-pt+tpand(1-t)weobtainp-11-(
17、p-1)tfor0t1,pp-1pptn=(1-+p(1-k)+dpL0n)n(1-n)n2pp(10)1-pkn-p(p-1)(1-k)n+(1+dpL0)n.2ppSincentpforalln0,wehavefrom(8)p(p-1)(1-k)n-(1+dpL0)n-pkpkn.Henceitfollowsthattn1-nforeachn0.Ontheotherhand,since22limnn=0,thereexistsapositiveintegerNsuchthat0ntpforeachnN.Thisimpliesthatpt+p(1-k)n=(1-n)n(1-n)1-pknfo
18、reachnN.2p-1pp+dpL0n332© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.Therefore,weobtainthatforeachnN,xn+1-qppp-1p-1p1/p(1-k)+p(1-+p2L0n)n(1-n)n(1-n)n(1+L0)ppp+dpL0pkn(1-n)xn-q22p1/ppppt2L0-pkdpL0n+p(n-(p-1)n)n(1+L0)nnxn-q2p1/pp1/p2n1-pkn+2pL0(1+L0)nn-2p(p-1)L0(1+L0)n2
19、ppp-pkdpL0nnxn-q.2Sincelimnn=0implieslimnnn=0,wehave-11/pp1/p2plim2pL0(1+LppkdpLpnn0)nn-2p(p-1)L0(1+L0)nn-0nnn21/p1/p=2pL0(1+Lp<2p2L0(1+Lp.0)p)Fromthisandthecondition(ii),wederivethatthereisapositiveintegerN0>NsuchthatforeachnN0,xn+1-qp2p1/pp1-pkn+2pL0(1+L0)nnxn-q22p1/pp1-pk2n+2pL0(1+L0)nxn-qp
20、1/p24pL0(1+L0)p(p-1)k1-nxn-q2p(p-1)kexp(-n)xn-q2np(p-1)kexp(-j)xN0-q.2j=N0Thisimmediatelyimpliesthestrongconvergenceofxntoqsincetheseriesnndi2verges.Theproofiscomplete.ReviewingtheproofofTheorem1,wecanseethatthefollowingconsequenceistrue.Theorem2LetCbeanonemptyboundedclosedconvexsubsetofap-uniformly
21、smoothBanachspaceXwith1<p2andT:CCbeaLipschitzianandstrictlypseu2docontractivemappingwithLipschitzconstantL.Letnquencesofrealsin0,1satisfying(i)n=andlimn=0;n=0nn=0andnn=0bese2333© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.4p2L(1+Lp)1/pwheretpisthe(smaller)solutionoftheequation(ii)0mintp,nforeachn0,pk=0(t>0),2),dparetheconstantsappearingin(5)and(7),respective2k=(t-1)/tandt(1,ly.Then,fo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电子美容仪合作协议书
- 2025年磁卡宽片项目建议书
- 葡萄酒产业生态链投资与窖藏仓储合作合同
- 氢燃料电池系统环境适应性测试员协议
- 红筹架构下合资企业股权合作与收益分配协议
- 装载机司机培训课程大纲
- 医疗查房车租赁及远程医疗诊断服务合同
- Web前端开发技术项目教程(HTML5 CSS3 JavaScript)(微课版) 课件 6.2.4知识点3:CSS3图片边框属性
- 电商商品上架与用户隐私保护服务合同
- 国际旅行者数据加密海外医疗保险租赁合同
- 2025年福建省福州市中考数学二检试卷
- 2025年中国光纤市场现状分析及前景预测报告
- 药房驻店药师合同协议
- 2025年邮轮旅游市场深度分析报告:产业现状与未来趋势预测
- 2025届四川省成都市高三毕业班第三次诊断性考试英语试卷读后续写-笛子失而复得的故事+讲义
- 行政案例分析-终结性考核-国开(SC)-参考资料
- 2024年四川省绵阳市中考英语试题卷(标准含答案)
- 04S519小型排水构筑物(含隔油池)图集
- 小学语文作文:五感法描写课件
- 千斤顶详细设计
- 吸附塔装填手册071226资料
评论
0/150
提交评论