




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、鼓风式机械通风冷却塔空气动力特性数值模拟研究赵顺安、李红莉、毋飞翔(中国水利水电科学研究院,北京100038)Numerical research on aerodynamic characteristics of the forced draft mechanical cooling towerZhaoShunan、LiHongli、WuFeixiang(China Institute of Water Resource and Hydropower Research, Beijing 100038 )摘要:鼓风式机械通风冷却塔常用于核电厂的重要厂用水系统,但相关设计规范并没有给出冷却塔的空
2、气动力特性计算公式。本文采用Fluent软件对鼓风式机械通风冷却塔的空气动力进行了数值模拟计算,对冷却塔的设计布置进行了优化,分析总结给出了冷却塔阻力计算公式。结果表明,填料安装位置对鼓风式机械通风冷却塔整塔阻力影响不大,但会影响填料断面风速分布均匀性,填料安装高度越低,风速分布越均匀;出口收缩段的高度越高,整塔阻力越小,风速分布越均匀;出口收缩段与水平的夹角越大,整塔阻力系数越小,但变化趋势不明显,收缩角基本不影响填料断面风速分布均匀性。关键词:鼓风式冷却塔;塔型;阻力系数;风速均匀性Abstract:The forced draft mechanical cooling tower is
3、always used in a nuclear power plant, while the relevant design specificationshave notformula about the aerodynamic characteristics of cooling tower.This paper uses FLUENT software to simulate and study the aerodynamic characteristics of the forced draft mechanical cooling tower,and optimize the des
4、ign of the cooling tower,and analysis to summarize the cooling tower resistance calculative formula.The results show that the height of the fill has little effectsonthe whole tower resistance coefficient,but it influences the wind velocity distribution uniformity of the fill section, the lower the p
5、osition is, themore uniform the wind velocity distributionis; the convergent section height is higher, the whole tower resistance is smaller and the wind velocity distribution is more uniform.The angle between convergent section and horizon is bigger, the whole tower resistance is smaller,while
6、 this trend is not obvious,it does not affectthe wind velocity distribution uniformity on the fill section.Keywords:the forced draft mechanical cooling tower,tower shape, resistance coefficient, wind velocity distribution uniformity1研究背景内陆核电厂的重要厂用水的水量不大,但却影响核电厂的安全。鼓风式机械通风冷却塔能较好地适应核电对安全性和抗震性能的要求而常被内陆
7、核电厂采用。鼓风式机械通风冷却塔不仅在通风方式上有别于常规的抽风式机械通风冷却塔,在塔型结构布置上也有明显差异。我国的相关设计规范和资料对鼓风式机械通风冷却塔没有明确的设计计算方法15。为了解塔内气流特性并对塔型进行优化,需要通过相关的研究来确定其空气动力特性。通过物理模型试验来研究冷却塔空气动力特性是一个十分有效的手段,但是由于鼓风式机械通风冷却塔模型本身的复杂性及系统试验的塔型的变化,使模型试验研究工作量和投资都很大。本文利用Fluent软件建立鼓风式机械通风冷却塔空气动力计算的数学模型,经过与试验结果对比验证,确定模型参数和网格数量。研究了不同塔型条件下塔内气流分布及阻力特性,最终分析总
8、结出了鼓风式机械通风冷却塔的阻力计算公式以及塔型与配风均匀性的关系。阻力系数计算公式与试验结果相比偏差小于5%,可为设计提供参考。1research backgroundThe water quantity of important water systemof inland nuclear power plant is not big, but it affects the security of nuclear power plant.The forced draft mechanical cooling tower can satisfy the requirements of equi
9、pment security and earthquake resistance,so it will be used more and more in inland nuclear power plant.The forced draft mechanical cooling tower is not only different from the conventionalinduced draft mechanical cooling tower in ventilation way, but also has distinct difference in tower shape and
10、structure layout.China's relevant design specifications and information on the forced draft mechanical cooling towerhave no clear design method.For understanding the airflow characteristics of the tower and optimizingthe tower shape,it's necessary to do some relevant research to realizetheae
11、rodynamic characteristics.It's a very effective way to establish a physical model to study the aerodynamic characteristics of the cooling tower,however, due to the forced draft mechanical cooling tower model's complexity and variability, the workload ofexperiment and investment is very big.T
12、his paper uses FLUENT software to build a mathematical modelof the forced draft mechanical cooling tower to study the tower aerodynamic characteristics,andafter comparing with the experimental results to determine the model parameters and grid number. It studiesthe airflow distribution and resistanc
13、e characteristicsinthe conditions of different tower shapes, and analysis to summarize the cooling tower resistance calculative formula and the relationship between tower shape and airflow distribution uniformity.The difference ofcomputational resistance coefficientand the experimental results is le
14、ss than 5%,it can provide a reference for design.2数学模型及计算方法2.1空气流场控制方程塔内外流场为等温、不可压流动,其控制方程包括连续方程、动量方程,并选用双方程湍流模式对方程进行封闭,各方程可写为统一形式:(1)式中:为空气密度,kg/m3;为空气流速,m/s。各控制方程的变量、扩散系数项与源项如下表1。表1控制方程中各变量代表参数控制方程连续方程100动量方程(流速),湍能方程耗散方程其中生成项;为空气分子粘性系数;为压力;为紊流粘性系数,由动能和紊动耗散率求出:,为经验常数;和分别为和的紊流普朗特数。2 Mathematical mo
15、dels and calculative methods2.1Air flow governing equationsThe tower flow field is isothermal and incompressible.Itsgoverning equations include continuity equation, momentum equation,which can be closed withtwo-equation turbulence model,these equations can be written as a unified form: (1)Where:is a
16、ir density, kg/m3; is air velocity, m/s.Allgoverning equations' variable、diffusion coefficient term and source termare shown as Table 1 below.Table 1, andofevery governing equationGoverningequationsContinuityequation100Momentum equation(Velocity of flow),Turbulentenergyequation Dissipation equat
17、ion Generated item, is viscosity coefficient of the air molecules; is pressure, Pa; is the turbulent viscosity coefficient,which is can be calculated by the turbulent kinetic energy and dissipation rate:, is an empirical constant; and are turbulent Prandtlnumber of and .2.2 边界条件底部为固壁无滑移边界条件,四周及顶部采用压
18、力出口边界条件,塔壳采用固壁边界条件。进风口及塔的出口都设置成内部边界;填料区域设置成多孔介质边界条件,并根据实测填料阻力系数设置各方向阻力系数;风机采用Fluent风扇边界条件,也可采用第一类边界条件。2.2 Boundary conditionsThe bottom of the computational domain is solid wall boundary condition with no-slip,all around and top is pressure outlet boundary conditions,the tower shell is solid wall bo
19、undary condition.The boundaries of the air inlet and outlet are defined as interior; the porous model is used to simulate the fill and according to the measured resistance coefficient to set thefillresistance coefficient in each direction; the FLUENT fan model is used to simulate the fan of the towe
20、r,first boundary condition can also be used.2.3冷却塔阻力系数及风速分布均匀性计算鼓风式机械通风冷却塔,气流经由风机鼓入塔内,依次经过塔进风口,雨区、填料等,并经由出口排入到大气中,气流经过各部分的阻力为该区域前后断面的全压差,一般表示为阻力系数与填料断面平均气流速度头之积: (2)式中为气流经过某区域前后断面的全压差(Pa);为空气密度(kg/m3);为填料断面平均风速(m/s)。填料断面处风速分布状况影响冷却塔的热力特性,一般将填料断面风速分布均匀性作为一个设计指标,用风速分布均布系数表示:(3)式中为填料断面风速分布均布系数;为填料断面各点风
21、速(m/s);n为风速统计点的个数。2.3 Computational methods ofthe cooling tower resistance coefficient and wind velocity uniformityFor the forced draft mechanical cooling tower,airflow is blowninto thetower by the fan,sequentially through the tower inlet, rain zone, fill etc,and is dischargedinto the atmosphere thr
22、ough theoutlet finally. The resistanceof each part is the pressurelossof the region,which is generally expressed as the resistance coefficient multiply the average flow velocity head: (2)Where is the pressureloss of the region(Pa); is air density(kg/m3); is the average wind velocity of the fill sect
23、ion(m/s).Distribution of wind velocity at the fill section affects the thermodynamic characteristics of the cooling tower,generally put the wind velocity distributionuniformity of the fill section as a design index,it can be expressedwith a velocity distribution uniformity coefficient:(3)Where is th
24、e velocity distribution uniformity coefficient;is the velocity at the measure point in the fill section(m/s);n is the velocity statistical pointsnumber.2.4 模型的验证对已具有试验结果的某抽风式机械通风冷却塔的空气动力特性模型试验6作对比验证计算,冷却塔如图1示,首先对冷却塔进行网格的敏感性分析,然后再将计算结果进行对比分析。图1 抽风式机械通风冷却塔模型试验布置示意图不同填料阻力条件下模型试验实测与计算结果对比如图2所示,图中横坐标L0/L
25、为距其中一侧塔壁的相对距离,V/为相对风速,V为测点风速,为测点风速的平均值。进风口气流流态作对比如图3所示,从图中可以看出,试验结果与数值计算结果规律较为一致,吻合良好。图2 试验与计算填料断面风速分布对比(a)模型试验结果 (b)数值计算结果图3 试验与计算进风口上沿气流流态分布对比进风口区域冷却塔阻力系数试验与计算结果对比见表2,二者相差不大于5%,吻合较好。表2 模型试验与数值计算进风口区域阻力系数对比结果填料阻力系数进风口区域阻力系数相差(%)试验结果计算结果1016.116.1-0.002026.127.34.323036.138.04.922.4 Model validation
26、To do validationwiththe experimental results of aerodynamiccharacteristics of an induced draft mechanical cooling tower model,the layout drawing ofthe cooling tower is shown as Figure 1, Firstly, analysis the grid sensitivity,then compare and analyzethe results.Fig. 1Layout drawing of the induced dr
27、aft mechanical cooling tower model In the conditions of different fill resistance coefficients,the results of the comparisonbetween experimental and computational are shown in Figure 2, Abscissa L0 / L isthe relative distance from one side to the wall, V/is relative wind velocity, V is the velocity
28、at the measure point,is the average measure points wind velocity.The results of the comparisonbetween experimental and numericalinlet air flow state are shown in figure 3,as can be seen from Fig.3,experimental results is consistent with the results of numerical calculation.Fig. 2Comparison between e
29、xperimental and computational fill section wind velocity distribution(a)Experimental results(b)Numerical resultsFig.3Comparison between experimental and Numericalinlet air flow distributionComparison betweenexperimental and Numerical cooling tower air inlet area resistance coefficient are shown in t
30、able 2,the difference is not greater than5%,the resultstallywell.Table 2Comparison betweenexperimental and computational cooling tower air inlet area resistance coefficientFill resistance coefficientInlet resistance coefficientDifference (%)ExperimentalresultsNumerical results1016.116.1-0.002026.127
31、.34.323036.138.04.923计算结果及分析鼓风式机械通风冷却塔不同的塔型尺寸,如填料的安装高度、塔出口收缩段的高度、角度等,都会影响塔内气流阻力特性及风速分布,本文分别研究了不同塔型对冷却塔气流特性的影响。鼓风式机械通风冷却塔立面布置如图4所示,塔的平面尺寸为9.0m×9.0m,风机直径为6.0m。HCHF图4 鼓风式机械通风冷却塔立面布置图3 Results and analysisDifferent tower shapes for the forced draft mechanical cooling tower,such as installation heig
32、ht of the fill、the convergent section height and angle,will affect the tower airflow resistance characteristics and wind velocity distribution.This paper studies the influence of different tower shapes on the air flow characteristics. The forced draft mechanical cooling tower elevation is shown as F
33、ig.4,tower plane size is 9.0m×9.0m,fan diameter is 6.0m.Fig.4The forced draft mechanical cooling tower elevation3.1计算模型的建立及网格划分流体仿真计算域范围的选取影响计算的速度和精度,根据经验,当计算域到达一定的大小时,塔内的流场就不再受计算域大小的限制。假定塔高为H,宽为W,进风口高为H1,经过试算分析,计算域进风口上下游宽度取为3H1、宽度取为4W、高度取为2H时再增大计算域范围对计算影响不大。数值模拟计算与计算网格的划分密切相关,本文进行了网格相关性分析计算,结果
34、如图56所示。当网格数量达到50万时,塔内气流特性受网格数量的影响已经很小,计算区域网格图如图7所示。图5 网格数量对冷却塔阻力系数影响图6网格数量对填料断面风速分布影响图7 塔内及计算域网格示意图3.1Establishmentof calculative modeland meshgenerationThe scale of fluidcomputational domain affects the calculativevelocity and accuracy,based on experience,when computational domain reaches to a cert
35、ain scale, flow field in the tower is no longer limited by computational domain scale.Assumethat the tower height is H, width is W, air inlet height is H1,according to the results of the trial computation,it makes little difference to increase the computational domain when the length of upstream and
36、downstream of air inlet is 3H1, the width of the whole computational domain is 4W and the height is 2H.Numerical simulation is closely related togrid partition,this paper analysis grid correlation,the results are shown in Figure 5 and 6.It is known according to the two figures that thegrid number ha
37、s little effect on air flow characteristics in the towerwhen the grid number reaching 500000,computational domain grid is shown as Fig.7.Fig 5The influence of grid numberon the cooling tower resistance coefficientFig 6The influence of grid numberon thefill section velocity distributionFig 7The tower
38、 and computational domain grid schematic diagram3.2填料安装高度对冷却塔气流特性影响不同的淋水填料安装高度时,冷却塔的阻力系数与填料断面风速分布计算结果如图8和图9所示,图中横坐标HF/L为填料底至进风口上沿距离与塔宽之比,结果表明,填料安装高度对整塔阻力系数影响不大,但填料安装高度离塔进风口远时,填料阻力较小者风速分布均匀性变差。图8填料安装高度对整塔阻力系数的影响图9填料安装高度对填料断面风速分布均匀性的影响3.2 The influence of the fill installation height on the cooling to
39、wer aerodynamic characteristicsIn the conditions of different fill installation height, the computational results of cooling tower resistance coefficient and fill section wind velocity distribution are shown in figure 8 and figure 9,abscissaHF/L is the distance fromfill bottom totop of the air inlet
40、divides tower width,it turns out that the bottom height of the fillhas little effect on the whole tower resistance coefficient,but when fill installation height is higher,the smallerthefill resistance coefficientis ,the worse the wind velocitydistribution uniformity is.Fig.8Theinfluen
41、ce of fill installation heighton the cooling tower resistance coefficientFig.9Theinfluence of fill installation heighton the fill section velocity distribution3.3冷却塔出口收缩高度对冷却塔气流特性的影响调整冷却塔出口收缩高度,冷却塔的阻力系数与填料断面风速分布计算结果如图10和11所示,图中横坐标HC/L为收缩段至进风口上沿距离与塔宽之比。由图可以看出,随着塔出口收缩高度的增加,冷却塔阻力系数降低,当HC/L达到0.75后,阻力系数变
42、化减小,大于0.90后基本不再变化,填料断面风速分布均布系数亦有相似的规律。图10 收缩高度对整塔阻力系数的影响图11 收缩高度对填料断面风速分布均匀性的影响3.3The influence of the outlet convergentsection height on the cooling tower aerodynamic characteristicsAdjusting the cooling tower outlet convergent height,the computational results of cooling tower resistance coefficien
43、t and fill section wind velocity distribution are shown in figure 10 and figure 11, Abscissa HC/L is the distance fromthe convergent section tothe top of the air inlet divides tower width. As can be seen from the two figures,with the increase of the tower outletconvergent height, the whole cooling t
44、ower resistance coefficient decrease,when HC/L reaches 0.75,the resistance coefficient change becomes slowly,when HC/L is greater than 0.90,it's no change,fill section windvelocity distribution uniformity coefficient also has the similar laws.Fig.10Theinfluence of convergent heighton the cooling
45、 tower resistance coefficientFig.11Theinfluence of convergent heighton the fill section wind velocity distribution3.4冷却塔出口收缩角度对冷却塔气流特性的影响调整冷却塔出口收缩角度,冷却塔的阻力系数与填料断面风速分布计算结果如图12和13所示,图中横坐标为收缩段与水平的夹角。随着塔出口收缩角度的增加,冷却塔阻力系数降低,但趋势不明显。填料断面风速分布均布系数基本不受塔出口收缩角度的影响。图12 收缩角度对整塔阻力系数的影响图13 收缩角度对填料断面风速分布均匀性的影响3.4The
46、influence of convergentangle on the cooling tower airflow characteristicsAdjusting the cooling tower outlet convergentangle,the computational results of cooling tower resistance coefficient and fill section wind velocity distribution are shown in figure 12 and figure 13,Abscissa is the angle between
47、 convergent sectionand horizon.With the increase of tower outletconvergentangle, the cooling tower resistance coefficient decrease,but this trend is not obvious.Fill section wind velocity distribution uniformity coefficient is not affected by tower outlet convergentangle.Fig.12Theinfluence of conver
48、gentangleon the cooling tower resistance coefficientFig.13Theinfluence of convergentangleon the fill section wind velocity distribution3.5 冷却塔阻力系数计算公式按式(2)对不同塔型尺寸的计算结果进行分析总结,可获得以下冷却塔自风机进口到塔出口相对于填料断面速度头的阻力系数计算公式。公式整理时塔的出口段收缩角为27º,收缩段相对高度为0.50.92。(4)式中为填料阻力系数;为冷却塔淋水面积();为冷却塔出口面积()。3.5 Calculative
49、 formula of cooling tower resistance coefficient In the condition of summarizing the results of different tower shapesaccording to equation (2),itcan obtain the cooling tower resistance coefficient calculative formula which is from tower inlet to outlet relative to the fill section wind velocity.The
50、 convergent angle is 27º,the convergent section relative height HC/L is 0.50.92 when finishing the formula. (4)Where isthefillresistance coefficient; is tower's rain area (m2); is outlet area (m2)。4 结论本文对鼓风式机械冷却塔在不同填料安装高度、不同收缩高度与角度等条件下的塔的空气动力特性进行了数值模拟,结果表明,填料安装高度对冷却塔整塔阻力系数影响不大,在填料阻力小时,安装高度高
51、时均匀性变差;出口收缩段相对高度越大,阻力越低,填料断面风速分布也越均匀,当其大于0.90时所获的收益已经很小;出口收缩段与水平夹角增大时,冷却塔阻力系数降低,但趋势不明显,填料断面风速分布均布系数基本不受塔出口收缩角度的影响。本文还分析总结了鼓风式冷却塔的阻力系数计算公式,计算方法经过类似模型试验对比,与试验结果偏差在5%之内,可供冷却塔设计计算参考。4 Conclusions This paper establishes a numerical model to study the aerodynamic characteristics of the forced draft mechan
52、icalcooling tower in the conditions of differentfill installation heights、differentconvergent heights and angles, it turns out that the bottom height of the fillhas little effects on the whole tower resistance coefficient,but when fill installation height is higher,the smallerthefill resistance coefficientis ,the worse the distribution uniformity is;with the increase of the tower outletconvergent height, cooling tower resistance coefficient decrease,the fill section velocitydistrib
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45599-2025液体硅橡胶连接器用自润滑型
- 高三数学复习试题与答案要点
- 江苏省南京市、盐城市2025届高三下学期3月一模试题 英语 含解析
- 材料力学与智能制造重点基础知识点
- 材料疲劳裂纹扩展数据分析方法原理重点基础知识点
- 景点火灾应急预案目录(3篇)
- 计算机软件考试难点突破试题及答案
- 2025年法学概论考试技巧与试题及答案
- 停水停电火灾应急预案(3篇)
- 高考数学典型试题及答案
- (一模)2025年深圳市高三年级第一次调研考试 英语试卷(含标准答案)
- 丙酸铬、淀粉酶对黄羽肉鸡生长性能、抗氧化和肠道健康的影响
- 光伏发电新能源课件
- 2025年贵州遵义路桥工程限公司招聘10人高频重点提升(共500题)附带答案详解
- 上海市居住房屋租赁合同范本
- 老旧小区改造给排水施工方案
- 2025届江苏省南京市南京师大附中高考数学一模试卷含解析
- 49-提高临边防护栏杆有效合格率(清泉建筑)
- 新高考2025届高考数学二轮复习专题突破精练第9讲函数中的整数问题与零点相同问题学生版
- 中华民族共同体概论教案第九讲-混一南北与中华民族大统合
- 旅游经济专业知识和实务经济师考试(中级)试卷及解答参考
评论
0/150
提交评论