




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十四章 圆 优优 翼翼 课课 件件 小结与复习要点梳理考点讲练 课堂小结课后作业九年级数学上(RJ) 教学课件一.与圆有关的概念1.圆:平面内到定点的距离等于定长的所有点组成的图形.2.弦:连结圆上任意两点的线段.3.直径:经过圆心的弦是圆的直径,直径是最长的弦.4.劣弧:小于半圆周的圆弧.5.优弧:大于半圆周的圆弧.要点梳理要点梳理6.等弧:在同圆或等圆中,能够互相重合的弧.7.圆心角:顶点在圆心,角的两边与圆相交.8.圆周角:顶点在圆上,角的两边与圆相交.注意 (1)确定圆的要素:圆心决定位置,半径决定大小(2)不在同一条直线上的三个点确定一个圆.9.外接圆、内接正多边形:将一个圆n(
2、n3)等分,依次连接各等分点所得到的多边形叫作这个圆的内接正多边形,这个圆是这个正多边形的外接圆.10.三角形的外接圆 外心:三角形的外接圆的圆心叫做这个这个三角形的外心.注意 (1)三角形的外心是三角形三条边的垂直平分线的交点(2)一个三角形的外接圆是唯一的.11.三角形的内切圆 内心:三角形的内切圆的圆心叫做这个这个三角形的内心.注意 (1)三角形的内心是三角形三条角平分线的交点(2)一个三角形的内切圆是唯一的.12.正多边形的相关概念(1)中心:正多变形外接圆和内切圆有公共的圆心,称其为正多边形的中心.(2)半径:外接圆的半径叫做正多边形的半径.(3)边心距:中心到正多边形一边的距离叫做
3、正多边形的边心距.(4)中心角:正多边形每一条边对应所对的外接圆的圆心角都相等,叫做正多边形的中心角.二、与圆有关的位置关系1.点与圆的位置关系判断点与圆的位置关系可由点到圆心的距离d与圆的半径r比较得到设O的半径是r,点P到圆心的距离为d,则有点P在圆内;dr 点P在圆上;d=r 点P在圆外.dr 注意点与圆的位置关系可以转化为点到圆心的距离与半径之间的关系;反过来,也可以通过这种数量关系判断点与圆的位置关系2.直线与圆的位置关系设r为圆的半径,d为圆心到直线的距离直线与圆的位置关系 图形 d与r的关系 公共点个数 公共点名称 直线名称2个交点割线1个切点切线0个相离相切相交dr d=r d
4、r 三、 圆的基本性质1. 圆的对称性圆是轴对称图形,它的任意一条_所在的直线都是它的对称轴.直径2. 有关圆心角、弧、弦的性质.(1)在同圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等.(2)在同圆或等圆中,如果两个圆心角、两条弧和两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.圆心角相等弧相等弦相等(2)垂径定理的推论:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧; 平分弧的直径垂直平分这条弧所对的弦.三、 有关定理及其推论1.垂径定理(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的 .注意 条件中的“弦”可以是直径;结论中的“平分弧”
5、指平分弦所对的劣弧、优弧两条弧2.圆周角定理(1)圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.(3)推论2:90的圆周角所对的弦是直径.注意 “同弧”指“在一个圆中的同一段弧”;“等弧”指“在同圆或等圆中相等的弧”;“同弧或等弧”不能改为“同弦或等弦”(4)推论3:圆的内接四边形的对角互补.(2)推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对弧相等.3.与切线相关的定理(1)判定定理:经过圆的半径的外端且垂直于这条半径的直线是圆的切线.(2)性质定理:圆的切线垂直于经过切点的半径.(3)切线长定理:经过圆外一点所画的圆的两条切线,它们的切线长相等.这一点和圆
6、心的连线平分这两条切线的夹角.四、 圆中的计算问题1.弧长公式半径为R的圆中,n圆心角所对的弧长l=_.180n R2.扇形面积公式半径为R,圆心角为n的扇形面积S= _.2360nR12lR或3.弓形面积公式OO弓形的面积=扇形的面积三角形的面积(3)圆锥的侧面积为 .(4)圆锥的全面积为 .lr2lrr4.圆锥的侧面积(1)圆锥的侧面展开图是一个 .(2)如果圆锥母线长为l,底面圆的半径为r,那么这个扇形的半径为,扇形的弧长为 .扇形l2 r5.圆内接正多边形的计算(1)正n边形的中心角为360n(2)正n边形的边长a,半径R,边心距r之间的关系222( ) .2aRr(3)边长a,边心距
7、r的正n边形的面积为11.22Snarlr其中l为正n边形的周长.考点一 圆周角定理例1 在图中,BC是O的直径,ADBC,若D=36,则BAD的度数是( )A. 72 B.54 C. 45 D.36 ABCDB1351.如图a,四边形ABCD为O的内接正方形,点P为劣弧BC上的任意一点(不与B,C重合),则BPC的度数是 .CDBAPO图a针对训练2.如图b,线段AB是直径,点D是O上一点, CDB=20 ,过点C作O的切线交AB的延长线于点E,则E等于 .OCABED图b50考点二 垂径定理 例2 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距
8、离为8mm,如图所示,则这个小圆孔的宽口AB的长度为 mm.8mmAB8CDO解析 设圆心为O,连接AO,作出过点O的弓形高CD,垂足为D,可知AO=5mm,OD=3mm,利用勾股定理进行计算,AD=4mm,所以AB=8mm.2AOBCEF图a3.如图a,点C是扇形OAB上的AB的任意一点,OA=2,连接AC,BC,过点O作OE AC,OF BC,垂足分别为E,F,连接EF,则EF的长度等于 .(针对训练3ABCDP O图bDP4.如图b,AB是 O的直径,且AB=2,C,D是同一半圆上的两点,并且AC与BD的度数分别是96 和36 ,动点P是AB上的任意一点,则PC+PD的最小值是 .(例3
9、 如图, O为正方形对角线上一点,以点O 为圆心,OA长为半径的O与BC相切于点M. (1)求证:CD与O相切;ABCDOM(1)证明:过点O作ONCD于N.连接OM BC与O相切于点M, OMC=90 , 四边形ABCD是正方形,点O在AC上.AC是BCD的角平分线,ON=OM, CD与O相切.N考点三 与圆有关的位置关系ABCDOM(2)解: 正方形ABCD的边长为1,AC= . 设O的半径为r,则OC= .又易知OMC是等腰直角三角形, OC= 因此有 ,解得 .22r2r22rr22r (2)若正方形ABCD的边长为1,求O的半径.方法归纳(1)证切线时添加辅助线的解题方法有两种: 有
10、公共点,连半径,证垂直; 无公共点,作垂直,证半径;有切线时添加辅助线的解题方法是:见切点,连半径,得垂直;(2)设未知数,通常利用勾股定理建立方程.5. O的半径为R,圆心到点A的距离为d,且R、d分别是方程x26x80的两根,则点A与O的位置关系是( )A点A在O内部 B点A在O上C点A在O外部 D点A不在O上解析:此题需先计算出一元二次方程x26x80的两个根,然后再根据R与d的之间的关系判断出点A与 O的关系.D针对训练 6.(多解题)如图,直线AB,CD相交于点O, AOD=30 ,半径为1cm的P的圆心在射线OA上,且与点O的距离为6cm,如果P以1cm/s的速度沿由A向B的方向移
11、动,那么 秒钟后P与直线CD相切.4或8解析: 根本题应分为两种情况:(1)P在直线AB下面与直线CD相切;(2)P在直线AB上面与直线CD相切.ABDCPP2P1E 例4 已知:如图,PA,PB是 O的切线,A、B为切点,过 上的一点C作 O的切线,交PA于D,交PB于E.(1)若P70,求DOE的度数;AB解:(1)连接OA、OB、OC, O分别切PA、PB、DE于点A、B、C,OAPA,OBPB,OCDE,ADCD,BECE,OD平分AOC,OE平分BOC.DOE AOB.PAOB180,P70,DOE55.12 (2) O分别切PA、PB、DE于A、B、C, ADCD,BECE. PD
12、E的周长PDPEDE PDADBEPE2PA8(cm)(2)若PA4 cm,求PDE的周长例5 如图,四边形OABC为菱形,点B、C在以点O为圆心的圆上, OA=1,AOC=120,1=2,则扇形OEF的面积?解:四边形OABC为菱形 OC=OA=1 AOC=120,1=2 FOE=120 又点C在以点O为圆心的圆上 21201=3603S扇形OEFpp创=考点四 圆中的计算问题 7.(1)一条弧所对的圆心角为135 ,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 . (2)若一个正六边形的周长为24,则该正六边形的面积为_.40cm24 3针对训练8.如图,已知C,D是以AB为直径
13、的半圆周上的两点,O是圆心,半径OA=2,COD=120,则图中阴影部分的面积等于_23p例6 如图所示,在正方形ABCD内有一条折线段,其中AEEF,EFFC,已知AE=6,EF=8,FC=10,求图中阴影部分的面积.解:将线段FC平移到直线AE上,此时点F与点E重合, 点C到达点C的位置.连接AC,如图所示.根据平移的方法可知,四边形EFCC是矩形. AC=AE+EC=AE+FC=16,CC=EF=8.在RtACC中,得2222AC= AC +CC = 16 +8 =8 5正方形ABCD外接圆的半径为4 5正方形ABCD的边长为ACAB=4 10222=4 54 10=80160S阴影()
14、 () 当图中出现圆的直径时,一般方法是作出直径所对的圆周角,从而利用“直径所对的圆周角等于 ”构造出直角三角形,为进一步利用勾股定理或锐角三角函数提供了条件.方法总结909. 如图,正六边形ABCDEF内接于半径为5的 O,四边形EFGH是正方形求正方形EFGH的面积;解:正六边形的边长与其半径相等,EF=OF=5. 四边形EFGH是正方形, FG=EF=5, 正方形EFGH的面积是25.针对训练正六边形的边长与其半径相等,OFE=600.正方形的内角是900,OFG=OFE +EFG=600+900=1500.由得OF=FG,OGF= (1800-OFG) = (1800-1500)=150.1212连接OF、OG,求OGF的度数考点五 与圆有关的作图 abcda例7 如何解决“破镜重圆”的问题:O例8 如何作圆内接正五边形怎么作?OE72BADC(1)用量角器作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年网络管理员考试复习全书试题及答案
- 2025年业务增长与市场策略试题及答案
- 寻找VB考试试题与答案的途径
- 2025年计算机二级VB试题及答案综述
- 高考作文探索人生意义试题及答案
- 高效复习数学试题及答案
- 高考数学突破自我试题及答案
- 阐释内心世界的2023年高考作文试题及答案
- 2025合法的个体技术授权合同及注意事项(合同范本)
- 2025设备转让协议合同
- 股权终止合作协议书
- 入团考试试题及答案大学
- 2025园林景观设计合同范本
- 2025年北京高考语文三轮复习之微写作
- 阿片类药物不良反应和处置
- 贵港离婚协议书模板
- 2025年公安机关人民警察基本级执法资格备考题库
- 2025保密在线教育培训题库(含答案)
- 2.1 充分发挥市场在资源配置中的决定性作用 课件-高中政治统编版必修二经济与社会
- 2024年河南郑州航空港投资集团招聘真题
- 2024年宝应县公安局招聘警务辅助人员真题
评论
0/150
提交评论