




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上函数的最大值和最小值与导数教学设计【课本教材内容分析】本节教材知识间的前后联系,以及在课堂教学中的地位与作用:导数(导函数的简称)是一个特殊函数,它的引出和定义始终贯穿着函数思想。新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强,而且导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的不可缺少的工具。众所周知,函数又是中学数学研究导数的一个重要载体,因此函数问题涉及高中数学比较多的知识点和数学思想方法。导数作为研究函数的一种重要工具,在宁夏高考进入新课标实验区之后,不但成为宁夏高考文理科数学的必考题,而且也逐渐成为高考试卷中起到拔高
2、作用的热点难题。 在学习时应引起我们教师和学生的充分重视。本节主要研究闭区间上的连续函数最大值和最小值的求法与函数导数之间的关系及其简单的应用问题,分两课时,这里是第一课时,它是在学生已经会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,并且以本节知识为基础,可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题为下一节“生活中的优化问题”的教学打下坚实的基础。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有重要的理论价值和现实价值高中阶段对用导数求可导函数在闭区间上的最
3、值的方法不要求作严密的理论推导,这一方法完全可以由学生通过对函数图象的观察、归纳得到,所以本节教材还有一个重要的教育功能,那就是培养学生的探索精神,体验自主学习的成功愉悦.【课堂教学三维目标】根据本节教材特点,结合学生已有的认知水平,制定本节如下的三维教学目标:1知识和技能目标(1)使学生理解函数的最大值和最小值的概念,掌握可导函数 在闭区间 上所有点(包括端点 )处的函数中的最大(或最小)值必有的充分条件;并且能理解函数最值与极值的区别和联系(2)理解可导函数的最值存在的可能位置(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤2过程和方法目标(1)通过函数图象的直观,让学生发现函数极
4、值与最值的关系,掌握利用导数求函数最值的方法。(2) 在学习过程中,观察、归纳、表述、交流、合作,最终形成认识(3) 培养学生的数学能力,能够自己发现问题,分析问题并最终解决问题3情感态度和价值观目标(1) 渗透数形结合的思想,体会导数在求函数最值中的优越性,优化学生的思维品质。(2) 认识事物之间的的区别和联系,体会事物的变化是有规律的唯物主义思想(3) 提高学生的数学能力,培养学生的创新精神、实践能力和理性精神【教学重点、难点和关键点】1教学重点 基于以上对本节教材特点和教学目标的分析,将本节课的教学重点确定为:(1)培养学生的探索精神,积累自主学习的经验;(2)会求闭区间上的连续函数的最
5、大值和最小值2教学难点高中年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是(1)发现闭区间上的连续函数f (x)的最值只可能存在于极值点处或区间端点处;即理解函数的最大值、最小值与函数的极大值和极小值的区别与联系(2)理解方程f(x)=0的解,包含有指定区间内全部可能的极值点3教学关键点本节课突破难点的关键是:通过合作探究的方式,让学生在运动变化的过程中通过观察、比较,发现结论【课堂教学方法选择】关于教法与学法:(1)班杜拉的社会学习原理认为:观察学习是重要的学习方法这节课采用的第一个方法就是“观察、比较法”;(2
6、)为了克服学生已有知识经验和阅历不足的弱点,采用多媒体辅助教学,设计了一个动画课件,让学生在函数图象的运动变化中观察、比较,发现数学本质;(3)根据新课标的教学理念,教学中要培养学生合作共事的团队精神,这节课还采用了“合作、讨论法”,让学生共同探讨、合作学习、取长补短、形成共识【学法指导】对于求函数的最值,高中学生在高一阶段的必修一的学习已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用【教学过程】本节课的教
7、学,大致按照“回顾复习旧知-创设情境,铺垫导入合作学习,探索新知指导应用,鼓励创新归纳小结,反馈建构”四个环节进行组织教学环节教 学 内 容设 计 意 图一、【知 识 复 习 回 顾 创 设 情 境,铺 垫 导 入】知识复习回顾:1、极大值、极小值的概念:2求函数极值的方法:练习 :求函数 f(x)=-x4+2x2+8的极值 . 解:第一步 确定函数 f(x)的定义域 函数 f(x)=-x4+2x2+8的定义域是( -, +) . 第二步 求函数 f(x)的导数 f (x) f(x)=-x4+2x2+8, f (x)=-4x3+4x=-4x(x2-1)=-4x(x+1(x-1). 第三步 求方
8、程 f (x)=0的根 由 f (x)=0,即 -4x(x+1)(x-1)=0,得 X1=-1,x2=0,x3=1. 这三个点将( -, +)分成四部分:(-, -1),( -1, 0),( 0, 1),( 1, +) 第四步 确定 f (x)在每一个根的左、右区间内取值的等号,并列成表格 .如果左正右负,则 f(x)在这个根处取得极大值;如果左负右正,则 f (x)在这个根处取得极小值 . (表格略)第五步 求出各极值处的函数值,就得到函数的全部极值 . x=-1 时, f(x)有极大值 f(-1)=-1+2+8=9; x=0 时, f(x)有极小值 f(0)=8; x=1 时, f(x)有
9、极小值 f(1)=9. 3引出课题:我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质。也就是说,如果x0是f(x)的极大(小)值点,那么在点x0 附近找不到比f(x0)更大(或更小)的值。但是,在解决实际问题或研究函数白璧微瑕 质时,我们往往更关心函数在某个区间上,哪个值最大,哪个值最小。如果x0 是f(x)的最大(小)值点,那么f(x0)是不是不小(大)于f(x)在相应区间上的所有的函数值。这节课我们将学习一种很重要的方法,来求某些函数的最值 回顾复习用导数求极值的思路和方法。 通过复习,帮助学生迅速准确地发现相关的数量关系这时学生经思考后会发现,以前学习过的
10、知识还不足以解决这一新问题,从而激发起学生的学习热情以实例引入新课,有利于学生感受到数学来源于身边的学习生活,培养学生用数学的意识。 专心-专注-专业教学环节教 学 内 容设 计 意 图二、合 作 学 习,探 索 新 知如图3.3-13,观察区间a,b上函数y=f(x)的图象,你能找出它的极大值、极小值吗? 观察图象,我们发现,f(x1) , f(x3), f(x5)是函数y=f(x)的极小值,f(x2) , f(x4), f(x6)是函数y=f(x)的极大值。探究:你能找出函数y=f(x)在区间a,b上的最大值、最小值吗?从图3.3-14可以看出,函数y=f(x)在区间a,b上的最大值是f(
11、a),最小值f(b).在图3.3-14、3.3-15中,观察a,b上的函数y=f(x)的图象,它们在a,b上有最大值、最小值吗?如果有,最大值和最小值分别是什么?一般地,如果大区间a,b上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。 结合图3.314、图3.3-15,以及函数极值中的例子,不难看出,只要把函数y=f(x)的所有极值连同端点的函数值进行比较,就可以求出函数的最大值与最小值。总结:函数的极值是一个局部性概念,而最值是某个区间的整体性概念;函数的极值有多个,而函数的最大(小)值最多只有一个。极值点不一定是最值点,最值点也不一定是极值点。问题:在区间上函数的最
12、大值,最小值怎么求?通过对已有相关知识的回顾和深入分析,自然地提出问题:闭区间上的连续函数最大值和最小值在何处取得?如何能求得最大值和最小值?以问题制造悬念,引领着学生来到新知识的生成场景中,为新知的发现奠定基础后,提出教学目标,让学生带着问题走进课堂,既明确了学习目的,又激发起学生的求知热情为让学生更好地进行发现,教学中通过改变区间位置,引导学生观察同一函数在不同区间内图象上最大值最小值取得的位置,形成感性认识,进而上升到理性的高度学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作在整个新知形成过程中,教师的身份始终是启发者、鼓励者和指导者,以提高学生抽象
13、概括、分析归纳及语言表述等基本的数学思维能力 教学环节教 学 内 容设 计 意 图三、指 导 应 用,鼓 励 创 新例1如图:在闭区间a,b上连续函数f(x)的最大值、最小值分别是什么?分别在何处取得?问题:以上分析,说明求函数f(x)在闭区间a,b上最值的关键是什么?归纳:设函数f(x)在a,b上连续,在(a,b)内可导,求f (x)在a,b上的最大值与最小值的步骤如下:(1)求f (x)在(a,b)内的极值;(2)将f (x)的各极值与f (a)、f (b)比较,其中最大的一个是最大值,最小的一个是最小值例2 求函数y= x42 x25在区间2,2上的最大值与最小值解法1: y=4 x34
14、x,令y=0,有4 x34x=0,解得:x=1,0,1当x变化时,y,y的变化情况如下表:x2(-2,-1)1(-1,0)0(0,1)1(1,2)2y000y1345413从上表可知,最大值是13,最小值是4思考:求函数f (x)在a,b上最值过程中,判断极值往往比较麻烦,我们有没有办法简化解题步骤?分析:在(a,b)内解方程f(x)=0 , 但不需要判断是否是极值点,更不需要判断是极大值还是极小值设函数f(x)在a,b上连续,在(a,b)内可导,求f(x)在a,b上的最大值与最小值的步骤可以改为:(1)求f(x)在(a,b)内导函数为零的点,并计算出其函数值;(2)将f(x)的各导数值为零的
15、点的函数值与f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值解法2:y=4 x34x令y=0,有4x34x=0,解得:x=1,0,1x=1时,y=4,x=0时,y=5, x=1时,y=4又 x=2时,y=13,x=2时,y=13所求最大值是13,最小值是4例1的教学可让学生讨论交流思考,得出结论。由问题引出用导数求最值的方法及解题思路。解决例2的方法并不唯一,还可以通过换元转化为学生熟知的二次函数问题;而这里利用新学的导数法求解,这种方法更具一般性,是本节课学习的重点“问起于疑,疑源于思”,数学最积极的成分是问题,提出问题并解决问题是数学教学的灵魂思考题的目的是优化导数法求最
16、大、最小值的解题过程,培养学生的探究意识及创新精神,提高学生分析和解决问题的能力 对例题2用简化后的方法求解,便于学生将它与第一种解法形成对照,使得问题的解决更简单明快,更易于操作,更容易被学生所接受 教学环节教 学 内 容设 计 意 图三、指 导 应 用,鼓 励 创 新例3设f(x)=ax3+x恰有三个单调区间,试确定a的取值范围,并求其单调区间。解析:f'(x)=3ax2+1,若a0, f'(x)>0,对xR恒成立,此时f(x)只有一个单调区间,矛盾。若a<0, f'(x)=,此时f(x)恰有三个单调区间。 a<0且单调减区间为,单调增区间为。课堂
17、练习:P-31 课后练习 (1)(2)(3)(4)例题3的主要特点是含有参变量通过该例题深化对导数知识的理解,对优秀学生是拔高。 能使学生完善知识结构, 领悟思想方法,强化情感体验,提高认识能力,是本节课学生学习的升华例题3的解决,继续巩固用导数法求闭区间上连续函数的最值,同时也让学生体会到现实生活中蕴含着大量的数学信息,培养他们用数学的意识和能力课堂练习的目的在于及时巩固重点内容,使学生在课堂上就能掌握同时强调规范的书写和准确的运算,培养学生严谨认真的数学学习习惯对学生完成练习情况进行评价,使所有学生都体验到成功或得到鼓励,并据此调控教学四、归 纳 小 结 ,反 思 建 构课堂小结:(在老师
18、的指导下可让学生自己总结)本节主要研究函数的极值、最值与函数导数之间的关系,导数作为研究函数的一种重要工具,在学习时应引起充分重视,这部分知识点不多,但涉及的题型比较多,在学习过程中应该注意以下几个方面的问题:(1)理解函数极值的概念,函数极值刻画的是函数的局部性质,而函数的最值刻画的是函数的整体性质;(2)注意比较极值与最值的概念以及它们之间的联系,可导函数在极值点两侧导函数的符号相反,极大值不一定是最大值,极大值可能小于极小值,连续可导函数闭区间上的最值就是端点值与极值中的最大值、最小值等结论要熟练准确记忆;(3)可导函数有极值是该点处的导数值等于零的充分不必要条件(4)求闭区间上连续函数
19、的最值的方法与步骤;布置作业:必做题: 一、 求下列函数在所给区间上的最大值与最小值:(1)y=xx3,x0,2;(2)y=x3x2x,x2,1 选做题: 1函数y=4x2(x-2), x-2,2的最小值是_。 2一个外直径为10cm的球,球壳厚度为,则球壳体积的近似值为_。 3函数f(x)=x4-5x2+4的极大值是_,极小值是_。 4做一个容积为256升的方底无盖水箱,问高为多少时最省材料? 选做题参考答案:1. 642. 19.63cm33. 4;4. 设高为h,底边长为a,则所用材料为S=a2+4ah,而a2h=256,a(0,+), , a(0,+), 令S'(a)=, a=
20、8。显然当0<a<8时,S'(a)<0,当a>8时,S'(a)>0,因此当a=8时,S最小,此时h=4。板书设计: 函数的最小值和最大值与导数一 观察图形回答问题探究新知。 三、讲解例题二 归纳得出关于函数与导数的有关结论。 四、课堂练习. 通过课堂小结,深化对知识理解,完善认识结构,领悟思想方法,强化情感体验,提高认识能力课外作业分必做题与选做题,因材施教、及时反馈,让不同的学生在数学上得到不同的发展同时有利于教师发现教学中的不足,及时反馈调节【关于本节课教学设计的一些说明】函数是中学数学的核心内容。在整个中学数学课程中充当着联系各部分代数知识的
21、“纽带”,可以说函数的观点和方法既贯穿了高中代数的全过程,又是学习高等数学的基础,是高考数学中极为重要的内容,而导数的思想方法和基本理论同样也有着广泛的应用,除对中学数学有重要的指导作用外,也能在中学数学的许多问题上起到居高临下和以简化繁的作用。纵观全国及各自主命题省市近三年的高考试题,尤其是宁夏的高考试题,函数与导数在选择、填空、解答三种题型中每年都有试题,分值20分左右高考对导数的考查主要以工具的方式进行命题,充分与函数相结合.其主要考点:(1)考查利用导数研究函数的性质(单调性、极值与最值);(2)考查原函数与导函数之间的关系;(3)考查利用导数与函数相结合的实际应用题.从题型及考查难度上来看主要有以下几个特点:以填空题、选择题考查导数的概念、求函数的导数、求单调区间、求函数的极值与最值;与导数的几何意义相结合的函数综合题,利用导数求解函数的单调性或求单调区间、最值或极值,属于中档题;利用导数求实际应用问题中最值,为中档偏难题.鉴于以上对“函数与导数”考点的分析,本节课重点在于加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以“是否存在?存在于哪里?怎么求?”为线索展开但在课堂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津英语高考试题及答案
- 沪科版七年级上册数学第一次月考全真模拟试卷(含答案)
- 皮毛微生态肺过敏关联-洞察及研究
- 中国保险中介管理办法
- 规范石材加工管理办法
- 要素资源评估管理办法
- 警车保安登记管理办法
- 自营与资产管理办法
- 中央救市措施管理办法
- 英威腾项目管理办法
- JCT908-2013 人造石的标准
- 住院病历质量考核评分表
- 充电桩工程施工组织设计施工组织
- 执业兽医机构聘用证明或服务协议
- 身体尺(课件)二年级上册数学人教版
- 化验室检验和试验管理制度
- 欠款转为借款合同
- 公路隧道建设施工技术规范学习考试题库(400道)
- 严重创伤重症监护
- 人教版六年级语文上册生字表(带拼音词组)-2023修改整理
- 初中生自我介绍范文给老师
评论
0/150
提交评论