平面向量的坐标与点的坐标的关系_第1页
平面向量的坐标与点的坐标的关系_第2页
平面向量的坐标与点的坐标的关系_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第 六 讲课题:7-4平面向量的直角坐标系 用坐标作向量的运算 7-5平面向量的坐标与点的坐标的关系知识目标1.掌握平面向量的坐标运算,会用坐标表示平面向量的加、减、数乘运算;2.会求向量的和与差的坐标,会求数乘向量的坐标;3.理解相等向量的坐标表示。能力目标通过平面向量坐标表示及坐标运算法则的推导培养学生演绎、归纳、猜想的能力。重点难点1、重点:平面向量的坐标运算;2、难点:向量的坐标表示的理解及运算的准确性。时量90分钟教学方式设计1、课前复习(10分钟) 2、平面向量的坐标及运算(30分钟);3、平面向量的坐标运算(35分钟);4、课堂练习及布置作业(15分钟)。教学过程一 、复习引入1

2、.向量的表示方法:用有向线段表示;用字母a、等表示; 平面向量的坐标表示 若,则2.向量的加法:求两个向量和的运算,叫做向量的加法。几何法:向量加法的三角形法则和平行四边形法则。平面向量的坐标运算:若,则,3.向量的差:几何法: = a, = b, 则= a - b 即a - b可以表示为从向量b的终点指向向量a的终点的向量。平面向量的坐标运算:若,则4.实数与向量的积:(1)实数与向量的积是一个向量,记作: |=|;>0时与方向相同;<0时与方向相反;=0时=(2)坐标运算:5. 向量共线的充要条件: (¹)二、平面向量的直角坐标如图,在直角坐标系内,我们分别取与轴、轴

3、方向相同的两个单位向量、作为基底任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得我们把叫做向量的(直角)坐标,记作其中叫做在轴上的坐标,叫做在轴上的坐标,式叫做向量的坐标表示与相等的向量的坐标也为特别地,如图,在直角坐标平面内,以原点O为起点作,则点的位置由唯一确定设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示三平面向量的坐标运算(1) 若,则,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差设基底为、,则即,同理可得(2) 若,则一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标=

4、-=( x2, y2) - (x1,y1)= (x2- x1, y2- y1)(3)若和实数,则实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标设基底为、,则,即例1  如图所示,用基底、分别表示向量、,并求出它们的坐标解:= 2+ 3= (2,3),= - 2+ 3= (- 2,3),= - 2- 3= (- 2,- 3),= 2- 3= (2,- 3)例2已知a+b=(2,-8),a-b=(-8,16),求a和b.例3已知,求,的坐标。例4已知平行四边形的三个顶点、的坐标分别为、,求顶点的坐标。教学小结1引进向量的坐标后,向量的基本运算转化为实数的基本运算,可以解方程,可以解不等式,总之问题转化为我们熟知的领域之中2要把点坐标(x,y)与向量坐标区分开来,两者不是一个概念3. (1)任一平面向量都有唯一的坐标;(2)向量的坐标与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论