罗琦选修21利用空间向量解立体几何典型例题_第1页
罗琦选修21利用空间向量解立体几何典型例题_第2页
罗琦选修21利用空间向量解立体几何典型例题_第3页
罗琦选修21利用空间向量解立体几何典型例题_第4页
罗琦选修21利用空间向量解立体几何典型例题_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上一、 空间角说明:以下涉及的点均为所属线或面上的任意点。在可以建立空间坐标系的前提下,以下的点的坐标可求出。1异面直线所成的角点A,B直线a,C,D直线b。构成向量。所对应的锐角或直角即为直线a(AB)与b(CD)所成的角。例1 如图,已知直棱柱ABC-A1B1C1,在ABC中,CA=CB=1,棱AA1=2,求异面直线BA1,CB1所成的角。2线面所成的角与的角所对应的锐角的余角或直角即为直线AP与平面所成的角,所以OAP与的角的余弦值的绝对值为直线AP与平面所成的角的正弦值。例2棱长为a的正方体ABCDA1B1C1D1中,E、F分别为C1D1、B1C1的中点,(1)

2、 求证:E、F、B、D共面;(2) 求点A1D与平面EFBD所成的角。3二面角的求法二面角,平面的法向量,平面的法向量。,则二面l角的平面角为或。所以,若将法向量的起点放在两个半平面上(不要选择起点在棱上),当两个法向量的方向都向二面角内或外时,则为二面角的平面角的补角;当两个法向量的方向一个向二面角内,另一个向外时,则为二面角的平面角。EGFDCBA例2 如图,平面ABCD,ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点,EC与平面ABCD成300的角。(1)求证:EG平面ABCD;(2)若AD=2,求二面角E-FG-G的度数;(3)当AD的长是多少时,点D到平面EFG的

3、距离为2,请说明理由。点到面的距离线到面的距离线到线的距离面到面的距离二、 空间距离1点到面的距离OAP点P到面的距离可以看成在平面的法向量的方向上的射影的长度。2 异面直线间的距离异面直线a,b之间的距离可以看成在a,b的公垂向量的方向上EbaF的射影的长度。例4长方体ABCD-A1B1C1D1中AB=2,AD=4,AA1=6,E是BC的中点,F是CC1的中点,建立空间坐标系,求(1)异面直线D1F与B1E所成角的大小;(2)二面角D1-AE-D的大小;(3)异面直线B1E与D1F的距离。3 线面距离直线a与平面平行时,直线上任意一点A到平面的距离就是直线a与平面之间的距离。其求法与点到面的

4、距离求法相同。如图,正三棱柱ABC-A1B1C1的底面边长为3,例5侧棱长为,D是CB延长线上一点,且BD=BC。(1)求直线BC1与平面AB1D之间的距离;(2)求二面角B1-AD-B的大小;(3)求三棱锥C1-ABB1的体积。4 平面与平面间的距离平面与平面平行时,其中一个平面上任意一点到平面的距离就是平面与平面间的距离。其求法与点到面的距离求法相同。例6如图所示,在直三棱锥ABC-A1B1C1中,BC=2,CC1=4,点E在线段BB1上,且EB1=1,D、F、G分别为CC1、C1B1、C1A1的中点。(1)求证:B1D平面ABD;(2)求证;平面EGF平面ABD;(3)求平面EGF与平面

5、ABD的距离。练习:1(2008安徽文)如图,在四棱锥中,底面四边长为1的 菱形,, , ,为的中点。()求异面直线AB与MD所成角的大小;()求点B到平面OCD的距离。2(2008安徽理)如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点。()证明:直线;()求异面直线AB与MD所成角的大小; ()求点B到平面OCD的距离。3(2008北京文)如图,在三棱锥P-ABC中,AC=BC=2,ACB=90,AP=BP=AB,PCAC.()求证:PCAB;()求二面角B-AP-C的大小.ACBDP4(2008北京理)如图,在三棱锥中,()求证:;()求二面角的大小;()求点到平面的

6、距离5 (2008福建文) 如图,在四棱锥中,侧面PAD底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BCAD,ABCD,AD=2AB=2BC=2,O为AD中点。(1)求证:PO平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)求点A到平面PCD的距离6(2008福建理) 如图,在四棱锥P-ABCD中,则面PAD底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,O为AD中点.()求证:PO平面ABCD;()求异面直线PD与CD所成角的大小;()线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若

7、不存在,请说明理由.、7、(2008海南、宁夏理)如图,已知点P在正方体ABCDA1B1C1D1的对角线BD1上,PDA=60。(1)求DP与CC1所成角的大小;(2)求DP与平面AA1D1D所成角的大小。8. (2008湖北文)如图,在直三棱柱中,平面侧面 ()求证: ()若,直线AC与平面所成的角为, 二面角9. (2008湖北理)如图,在直三棱柱ABC-A1B1C1中,平面ABC侧面A1ABB1.()求证:ABBC;()若直线AC与平面A1BC所成的角为,二面角A1-BC-A的大小为的大小关系,并予以证明.10. (2008湖南理)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD60,E是CD的中点,PA底面ABCD,PA2. ()证明:平面PBE平面PAB;()求平面PAD和平面PBE所成二面角(锐角)的大小.11(2008湖南文) 如图所示,四棱锥的底面是边长为1的菱形,E是CD的中点,PA底面ABCD,。(I)证明:平面PBE平面PAB;(II)求二面角ABEP和的大小。18(2008全国卷理) 四棱锥中,底面为矩形,侧面底面,()证明:;()设与平面所成的角为,求二面角的大小19 (2008山东理)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA平面ABCD,,E,F分别是BC, PC的中点.()证明:AEPD;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论