




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录摘要IABSTRACTII第1章 概述- 1 -第2章 制动器设计方案的论证和选择- 5 -2.1 鼓式制动器的结构型式及选择- 6 -2.1.1 领从蹄式制动器- 6 -2.1.2 双领蹄式制动器- 8 -2.1.3 双向双领蹄式制动器- 8 -2.1.4 单向增力式制动器- 9 -2.1.5 双向增力式制动器- 9 -2.2 盘式制动器的结构型式及选择- 11 -2.2.1 固定钳式盘式制动器- 11 -2.2.2 浮动钳式盘式制动器- 11 -2.3 盘式和鼓式制动器比较- 13 -第3章 制动系的主要参数及其选择- 15 -3.1 制动力与制动力分配系数- 15 -3.2 同步附着
2、系数- 18 -3.3 制动强度和附着系数利用率- 21 -3.4 制动器最大制动力矩- 22 -3.5 制动器因数- 23 -第4章 制动器的设计计算- 25 -4.1 桑塔纳2000GSI的设计参数- 25 -4.2 盘式制动器主要参数的确定- 25 -4.3 盘式制动器最大制动力矩的计算- 26 -4.4 制动器单侧制动块最大压紧力的计算- 27 -4.5 摩擦衬块的磨损特性计算- 28 -第5章 制动器主要零部件的结构设计- 31 -5.1 制动器主要零部件的结构设计- 31 - 制动盘- 31 -5.1.2 制动钳- 31 -5.1.3 制动块- 31 -5.1.4 活塞- 32 -
3、5.2 摩擦材料- 32 -5.3 制动器间隙的调整方法- 33 -第6章 制动驱动机构的结构型式选择- 34 -6.1 制动驱动机构的结构型式及选择- 34 -6.1.1 简单制动系- 34 -6.1.2 动力制动系- 34 -6.1.3 伺服制动系- 35 -6.1.4 制动驱动机构的选择- 36 -6.2 制动管路的多回路系统- 36 -6.2.1 双回路系统的回路形式- 36 -6.2.2 双回路系统的选择- 37 -结论- 38 -参考文献- 40 -致谢- 41 -汽车前轮制动器的结构分析与设计计算摘 要关键词: 制动效能,The Structure Analysis and De
4、sign Calculation of Automobile Front Wheel Brakedetermined the basic parameters of the brake by analyzing and calculating designed reasonably the main brake parts of the structure, using a ventilation brake disk, and chose reasonably materials of the main components, in particular, friction material
5、s which selected semi-metallic friction materials (asbestos-free) and had good high-speed and high temperature stability and good anti-recession. Repeated appraisals indicate that the design meets 第1章 概 述汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保
6、证行车安全,汽车制动系统的工作可靠性显得日益重要。也只有制动性能良好、制动装置工作可靠的汽车,才能充分发挥其动力性能。汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置;牵引汽车应有自动制动装置。行车制动装置用作强制行驶中的汽车减速或停车,并使汽车在下短坡时保持适当的稳定车速。其驱动机构常采用双回路或多回路结构,以保证其工作可靠。驻车制动装置用于使汽车可靠而无时间限制地停驻在一定位置甚至斜坡上,它也有助于汽车在坡路上起步。驻车制动装置应采用机械式驱动机构而不用液压或气压式的,以免其产生故障。应急制动装置用于当行车制
7、动装置意外发生故障而失效时,则可利用应急制动装置的机械力源(如强力压缩弹簧)实现汽车制动。应急制动装置不必是独立的制动系统,它可利用行车制动装置或驻车制动装置的某些制动器件。应急制动装置也不是每车必备,因为普通的手力驻车制动器也可以起应急制动的作用。辅助制动装置用于山区行驶的汽车上,利用发动机排气制动、电涡流或液力缓速器等辅助制动装置,则可使汽车下长坡时长时间而持续地减低或保持稳定车速并减轻或解除行车制动器的负荷。通常,在总质量为5t以上的客车上和12t以上的载货汽车上装备这种辅助制动减速装置。自动制动装置用于当挂车与牵引汽车连接的制动管路渗漏或断开时,能使挂车自动制动。任何一套制动装置均由制
8、动器和制动驱动机构两部分组成。制动器有鼓式与盘式之分。行车制动是用脚踩下制动踏板操纵车轮制动器来制动全部车轮,而驻车制动则多采用手制动杆操纵,且具有专门的中央制动器或利用车轮制动器进行制动。中央制动器位于变速器之后的传动系中,用于制动变速器第二轴或传动轴。行车制动和驻车制动这两套制动装置必须具有独立的制动驱动机构。行车制动装置的驱动机构,分液压和气压两种型式。用液压传递操纵力时还应有制动主缸和制动轮缸以及管路;用气压操纵时还应有空气压缩机、气路管道、贮气筒、控制阀和制动气室等。过去,大多数汽车的驻车制动和应急制动都使用中央制动器,其优点是制动位于主减速器之前的变速器第二轴或传动轴的制动力矩较小
9、,容易满足操纵手力小的要求。但在用作应急制动时,往往使传动轴超载。现代汽车由于车速提高,对应急制动的可靠性要求更严,因此,在中、高级轿车和部分总质量在1.5t以下的载货汽车上,多在后轮制动器上附加手操纵的机械式驱动机构,使之兼起驻车制动和应急制动的作用,从而取消了中央制动器。重型载货汽车由于采用气压制动,故多对后轮制动器另设独立的由气压控制而以强力弹簧作为制动力源的应急兼驻车制动驱动机构,不再设置中央制动器。但也有一些重型汽车除了采用了上述措施外,还保留了由气压驱动的中央制动器,以便提高制动系的可靠性。汽车制动系应满足如下要求:(1)能适应有关标准和法规的规定。各项性能指标除应满足设计任务书的
10、规定和国家标准、法规制定的有关要求外,也应考虑销售对象国家和地区的法规和用户要求。我国的强制性标准是GB12676-1999汽车制动系结构、性能和试验方法、GB7258机动车运行安全技术条件。(2)具有足够的制动效能,包括行车制动效能和驻坡制动效能。行车制动效能是用在一定的制动初速度下或最大踏板力下的制动减速度和制动距离两项指标来评定,它是制动性能最基本的评价指标。综合国外有关标准和法规,可以认为:进行制动效能试验时的制动减速度j,轿车应为5.87m/s2(制动初速度v=80kmh);载货汽车应为4.45.5ms2 (制动初速度见表1)。相应的最大制动距离ST:轿车为ST=0.1v+v2/15
11、0;货车为ST=0.15v+ v2/115,式中第一项为反应距离;第二项为制动距离,ST单位为m;v单位为kmh。我国一般要求制动减速度j不小于0.6g(5.88 ms2),其条件如下:轿车制动初速度5080km/h、踏板力不大于400N;小型客车(9座以下)和轻型货车(总重3.5t以下)制动初速度5080km/h、踏板力不大于500N;其它汽车制动初速度3060km/h、踏板力不大于700N。但实际上踏板力值比法规规定小,要考虑操纵轻便性与同类车比较来确定。一般在水平干燥的沥青、混泥土路面上以初速度30km/h制动时,制动距离应保证:对轻型货车和轿车不大于7m,中型货车不大于8m,重型货车不
12、大于12m。驻坡效能是以汽车在良好路面上能可靠而无时间限制地停驻的最大坡度(%)来衡量。一般对轻型货车应不小于25%,中型货车不小于20%,牵引车不小于12%。驻车制动的手控制力,对于轿车和小型客车不超过400N,其它车不超过600N。(3)工作可靠。汽车至少应有行车制动和驻车制动两套制动装置,且它们的制动驱动机构应是各自独立的。行车制动装置的制动驱动机构至少应有两套独立的管路,当其中一套失效时,另一套应保证汽车制动效能不低于正常值的30%;驻车制动装置应采用工作可靠的机械式制动驱动机构。(4)制动效能的热稳定性好。汽车的高速制动、短时间内的频繁重复制动,尤其是下长坡时的连续制动,都会引起制动
13、器的温升过快,温度过高。特别是下长坡时的频繁制动,可使制动器摩擦副的温度达300400,有时甚至高达700。此时,制动摩擦副的摩擦系数会急剧减小,使制动效能迅速下降而发生热衰退现象。制动器发生热衰退后,经过散热、降温和一定次数的和缓使用使摩擦表面得到磨合,其制动效能可重新恢复,这称为热恢复。提高摩擦材料的高温摩擦稳定性,增大制动鼓、盘的热容量,改善其散热性或采用强制冷却装置,都是提高抗热衰退的措施。一般要求在初速为最高车速的80%时,以约0.3g的减速度重复进行1520次制动到初速度的1/2的衰退试验后,其热态制动效能应达到冷态制动效能的80%以上。(5)制动效能的水稳定性好。制动器摩擦表面浸
14、水后,会因水的润滑作用使摩擦系数急剧减小而发生所谓的“水衰退”现象。一般规定在出水后反复制动515次,即应恢复其制动效能。良好的摩擦材料吸水率低,其摩擦性能恢复迅速。也应防止泥沙、污物等进入制动器工作表面,否则会使制动效能降低并加速磨损。某些越野汽车为了防止水和泥沙侵入而采用封闭的制动器。(6)制动的稳定性好。即以任何速度制动,汽车都不应当失去操纵性和方向稳定性。一般要求在进行制动效能试验时,车辆的任何部位不得偏出3.7m的试验道。为此,汽车前、后轮制动器的制动力矩应有适当的比例,最好能随各轴间载荷转移情况而变化;同一轴上左、右车轮制动器的制动力矩应相同。(7)作用滞后的时间要尽可能地短,包括
15、从制动踏板开始动作至达到给定制动效能水平所需的时间(制动滞后时间)和从放开踏板至完全解除制动的时间(解除制动滞后时间)。一般要求这个时间尽可能短,对于气制动车辆不得超过0.6s,对于汽车列车不得超过0.8s。(8)制动时制动系噪声尽可能小,且无异常声响。(9)与悬架、转向装置不产生运动干涉,在车轮跳动或汽车转向时不会引起自行制动。(10)制动装置中应有音响或光信号等警报装置以便能及时发现制动驱动机件的故障和功能失效。 (11)能全天候使用,气温高时液压制动管路不应有气阻现象;气温低时气制动管路不应出现结冰。(12)制动器的机件应使用寿命长、制造成本低;对摩擦材料的选择也应考虑到环保要求,应力求
16、减小制动时飞散到大气中的有害于人体的石棉纤维。第2章 制动器设计方案的论证和选择除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,即是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。汽车制动器按其在汽车上的位置分为车轮制动器和中央制动器,前者是安装在车轮处,后者则安装在传动系的某轴上,例如变速器第二轴的后端或传动轴的前端。摩擦式制动器按其旋转元件的形状又可分为鼓式和盘式两大类。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上
17、,而制动底板则又紧固于前梁或后桥壳的突缘上(对车轮制动器)或变速器壳或与其相固定的支架上(对中央制动器);其旋转摩擦元件为固定在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱内表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已很少采用。由于外束型鼓式制动器通常简称为带式制动器,而且在汽车上已很
18、少采用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式结构。盘式制动器的旋转元件是一个垂向安放且以两侧面为工作面的制动盘,其固定摩擦元件一般是位于制动盘两侧并带有摩擦片的制动块。当制动盘被两侧的制动块夹紧时,摩擦表面便产生作用于制动盘上的摩擦力矩。盘式制动器常用作轿车的车轮制动器,也可用作各种汽车的中央制动器。车轮制动器主要用作行车制动装置,有的也兼作驻车制动之用;而中央制动器则仅用于驻车制动,当然也可起应急制动的作用。鼓式制动器和盘式制动器的结构型式也有多种,其主要结构型式如下图所示。图2.1 制动器的结构型式2.1 鼓式制动器的结构型式及选择鼓式制动器
19、可按其制动蹄的受力情况分类(见图2.2),它们的制动效能、制动鼓的受力平衡状况以及车轮旋转方向对制动效能的影响均不同。制动蹄按其张开时的转动方向和制动鼓的旋转方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。鼓式制动器按蹄的属性分为:2.1.1 领从蹄式制动器如图2.2(a)、(b)所示,若图上方的旋向箭头代表汽车前进时制动鼓的旋转方向(制动鼓正向旋转),则蹄1为领蹄,蹄2为从蹄。汽车倒车时制动鼓的旋转方向改变,变为反向旋转,随之领蹄与从蹄也就相互对调了。这种当制动鼓正、反向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器,称为领从
20、蹄式制动器。由图2.2(a)、(b)可见,领蹄所受的摩擦力使蹄压得更紧,即摩擦力矩具有“增势”作用,故又称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。图2.2 鼓式制动器简图(a)领从蹄式(用凸轮张开);(b)领从蹄式(用制动轮缸张开);(c)双领蹄式(非双向,平衡式);(d)双向双领蹄式;(e)单向增力式;(f)双向增力式对于两蹄的张开力P1=P2=P的领从蹄式制动器结构,如图2.2(b)所示,两蹄压紧制动鼓的法向力应相等。但当制动鼓旋转并制动时,领蹄由于摩擦力矩
21、的“增势”作用,使其进一步压紧制动鼓而使其所受的法向反力加大;从蹄由于摩擦力矩的“减势”作用而使其所受的法向反力减小。这样,由于两蹄所受的法向反力不等,不能相互平衡,其差值要由车轮轮毂轴承承受。这种制动时两蹄法向反力不能相互平衡的制动器也称为非平衡式制动器。液压或楔块驱动的领从蹄式制动器均为非平衡式结构,也叫做简单非平衡式制动器。非平衡式制动器将对轮毂轴承造成附加径向载荷,而且领蹄摩擦衬片表面的单位压力大于从蹄的,磨损较严重。为使衬片寿命均衡,可将从蹄的摩擦衬片包角适当地减小。对于如图2.2(a)所示具有定心凸轮张开装置的领从蹄式制动器,在制动时,凸轮机构保证了两蹄等位移,因此作用于两蹄上的法
22、向反力和由此产生的制动力矩应分别相等,而作用于两蹄的张开力P1、P2则不等,且必然有P1<P2。由于两蹄的法向反力N1=N2在制动鼓正、反两个方向旋转并制动时均成立,因此这种结构的特性是双向的,实际上也是平衡式的。其缺点是驱动凸轮的力要大而效率却相对较低,约为0.60.8。因为凸轮要求气压驱动,因此这种结构仅用于总质量大于或等于10 t的货车和客车上。领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,故仍广泛用作中、重型载货汽车的前、后轮以及轿车的后轮制动器。2.1.2 双领蹄式制动器当汽车前进时,若两制动蹄
23、均为领蹄的制动器,称为双领蹄式制动器。但这种制动器在汽车倒车时,两制动蹄又都变为从蹄,因此,它又称为单向双领蹄式制动器。如图2.2(c)所示,两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄、制动轮缸等机件在制动底板上是以制动底板中心作对称布置的,因此两蹄对鼓作用的合力恰好相互平衡,故属于平衡式制动器。单向双领蹄式制动器根据其调整方法的不同,又有多种结构方案,如图2.3所示。双领蹄式制动器有高的正向制动效能,但倒车时则变为双从蹄式,使制动效能大降。中级轿车的前制动器常用这种型式,这是由于这类汽车前进制动时,前轴的动轴荷及附着力大于后轴,而倒车时则相反,采用种结构作为前轮制动器并与领从蹄式后轮制动
24、器相匹配,则可较容易地获得所希望的前、后轮制动力分配()并使前、后轮制动器的许多零件有相同的尺寸。它不用于后轮还由于有两个互相成中心对称的制动轮缸,难于附加驻车制动驱动机构。 双向双领蹄式制动器当制动鼓正向和反向旋转时两制动蹄均为领蹄的制动器,称为双向双领蹄式制动器。如图2.2(d)及图2.4所示。其两蹄的两端均为浮式支承,不是支承在支承销上,而是支承在两个活塞制动轮缸的支座上或其他张开装置的支座上。当制动时,油压使两个制动轮缸的两侧活塞或其他张开装置的两侧均向外移动,使两制动蹄均压紧在制动鼓的内圆柱面上。制动鼓靠摩擦力带动两制动蹄转过一小角度,使两制动蹄的转动方向均与制动鼓的旋转方向一致;当
25、制动鼓反向旋转时,其过程类同但方向相反。因此,制动鼓在正向、反向旋转时两制动蹄均为领蹄,故称为双向双领蹄式制动器。它也属于平衡式制动器。由于这种制动器在汽车前进和倒退时的性能不变,故广泛用于中、轻型载货汽车和部分轿车的前、后轮。但用作后轮制动器时,需另设中央制动器用于驻车制动。2.1.4 单向增力式制动器如图2.2(e)所示,两蹄下端以顶杆相连接,第二制动蹄支承在其上端制动底板上的支承销上。当汽车前进时,第一制动蹄被单活塞的制动轮缸推压到制动鼓的内圆柱面上。制动鼓靠摩擦力带动第一制动蹄转过一小角度,进而经顶杆推动第二制动蹄也压向制动鼓的工作表面并支承在其上端的支承销上。显然,第一制动蹄为一增势
26、的领蹄,而第二制动蹄不仅是一个增势领蹄,而且经顶杆传给它的推力Q要比制动轮缸给第一制动蹄的推力P大很多,使第二制动蹄的制动力矩比第一制动蹄的制动力矩大23倍之多。由于制动时两蹄的法向反力不能互相平衡,因此属于一种非平衡式制动器。虽然这种制动器在汽车前进制动时,其制动效能很高,且高于前述各种制动器,但在倒车制动时,其制动效能却是最低的。因此,仅用于少数轻、中型货车和轿车上作前轮制动器。 2.1.5 双向增力式制动器 如图2.2(f)所示,将单向增力式制动器的单活塞制动轮缸换以双活塞式制动轮缸,其上端的支承销也作为两蹄可共用的,则成为双向增力式制动器。对双向增力式制动器来说,不论汽车前进制动或倒退
27、制动,该制动器均为增力式制动器。只是当制动鼓正向旋转时,前制动蹄为第一制动蹄,后制动蹄为第二制动蹄;而反向旋转时,第一制动蹄与第二制动蹄正好对调。第一制动蹄是增势领蹄,第二制动蹄不仅是增势领蹄,而且经顶杆传给它的推力Q要比制动轮缸给第一蹄或第二蹄的推力大很多。但制动时作用于第二蹄上端的制动轮缸推力起着减小第二蹄与支承销间压紧力的作用。双向增力式制动器也是属于非平衡式制动器。双向增力式制动器在高级轿车上用得较多,而且往往将其作为行车制动与驻车制动共用的制动器,但行车制动是由液压通过制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过纲索拉绳及杠杆等操纵。另外,它也广泛用于汽车中央
28、制动器,因为驻车制动要求制动器正、反的制动效能都很高,而且驻车制动若不用于应急制动时不会产生高温,因而热衰退问题并不突出。还应指出,制动器的效能不仅与制动器的结构型式、结构参数和摩擦系数有关,也受到其他有关因素的影响。例如制动蹄摩擦衬片与制动鼓仅在衬片的中部接触时,输出的制动力矩就小;而在衬片的两端接触时,输出的制动力矩就大。制动器的效能常以制动器效能因数或简称为制动器因数BF(brake factor)来衡量,制动器因数BF可用下式表达: (2-1)式中: fN1,fN2:制动器摩擦副间的摩擦力;N1,N2:制动器摩擦副间的法向力,对平衡式鼓式制动器和盘式制动器:N1=N2f制动器摩擦副的摩
29、擦系数;P鼓式制动器的蹄端作用力,盘式制动器衬块上的作用力。图2.5 制动器因数BF与摩擦系数f的关系曲线1-増力式制动器;2-双领蹄式制动器;3-领从蹄式制动器;4-盘式制动器;5-双从蹄式制动器基本尺寸比例相同的各种内张型鼓式制动器以及盘式制动器的制动器因数BF与摩擦系数f之间的关系如图2.5所示。BF值大,即制动效能好。在制动过程中由于热衰退,摩擦系数是会变化的,因此摩擦系数变化时,BF值变化小的,制动效能稳定性就好。制动器因数值愈大,摩擦副的接触情况对制动效能的影响也就愈大。所以,对制动器的正确调整,对高效能的制动器尤为重要。2.2 盘式制动器的结构型式及选择按摩擦副中的固定摩擦元件的
30、结构,盘式制动器分为钳盘式和全盘式制动器两大类。钳盘式制动器的固定摩擦元件是两块带有摩擦衬块的制动块,后者装在以螺栓固定于转向节或桥壳上的制动钳体中。两块制动块之间有作为旋转元件的制动盘,制动盘是用螺栓固定于轮毂上。制动块的摩擦衬块与制动盘的接触面积很小,在盘上所占的中心角一般仅约30° 50°,因此这种盘式制动器又称为点盘式制动器。其结构较简单,质量小,散热性较好,借助于制动盘的离心力作用易于将泥水、污物等甩掉,维修也方便。但由于摩擦衬块的面积较小,单位压力很高,摩擦面的温度较高,故对摩擦材料的要求较高。全盘式制动器的固定摩擦元件和旋转元件均为圆盘形,制动时各盘摩擦表面全
31、部接触。其工作原理如摩擦离合器,故又称为离合器式制动器。用得较多的是多片全盘式制动器,以便获得较大的制动力。但这种制动器的散热性能较差,故多为油冷式,结构较复杂。按制动钳的结构型式,钳盘式制动器又可分为固定钳式和浮动钳式两种。: 固定钳式盘式制动器如图2.6所示,在制动钳体上有两个液压油缸,其中各装有一个活塞。当压力油液进入两个油缸活塞外腔时,推动两个活塞向内将位于制动盘两侧的制动块总成压紧到制动盘上,从而将车轮制动。当放松制动踏板使油液压力减小时,回位弹簧又将两制动块总成及活塞推离制动盘。这种型式也称为对置活塞式或浮动活塞式。 浮动钳式盘式制动器浮动钳式盘式制动器的制动钳体是浮动的。其浮动方
32、式有两种,一种是制动钳体可作平行滑动;另一种是制动钳体可绕一支承销摆动(见图2.7)。因而有滑动钳式盘式制动器和摆动钳式盘式制动器之分。但它们的制动油缸均为单侧的,且与油缸同侧的制动块总成是活动的,而另一侧的制动块总成则固定在钳体上。制动时在油液压力作用下,活塞推动活动制动块总成压靠到制动盘,而反作用力则推动制动钳体连同固定制动块总成压向制动盘的另一侧,直到两制动块总成受力均等为止。对摆动钳式盘式制动器来说,钳体不是滑动而是在与制动盘垂直的平面内摆动。这样就要求制动摩擦衬块应预先做成楔形的(摩擦表面对背面的倾斜角为6°左右)。在使用过程中,摩擦衬块逐渐磨损到各处残存厚度均匀后即应更换
33、。图2.6 固定钳式盘式制动器1 转向节(或桥壳);2调整垫片;3活塞;4制动块总成;5导向支撑销;6制动钳体;7轮辐;8回位弹簧;9制动盘;10轮毂图2.7 浮动钳式盘式制动器工作原理1 制动盘;2制动钳体;3制动块总成;4带磨损警报装置的制动块总成;5活塞;6制动钳支架;7导向销 固定钳式盘式制动器在汽车上的应用是早于浮动钳式的,其制动钳的刚度好,除活塞和制动块外无其他滑动件,但由于需采用两个油缸分置于制动盘的两侧,使结构尺寸较大,布置较困难;需两组高精度的液压缸和活塞,成本较高;制动热经制动钳体上的油路传给制动油液,易使其由于温度过高而产生气泡影响制动效果;另外,由于两侧制动块均靠活塞推
34、动,难于兼用于由机械操纵的驻车制动,必须另加装一套驻车制动用的辅助制动钳,或是采用盘鼓结合式后轮制动器,其中作为驻车用的鼓式制动器由于直径较小,只能是双向增力式的,这种“盘中鼓”结构很紧凑,但双向增力式制动器的调整不方便。浮动钳式盘式制动器只在制动盘的一侧装油缸,结构简单,造价低廉,易于布置,结构尺寸紧凑,可以将制动器进一步移近轮毂,同一组制动块可兼用于行车和驻车制动。浮动钳由于没有跨越制动盘的油道或油管,减少了受热机会,单侧油缸又位于盘的内侧,受车轮遮蔽较少使冷却条件较好,另外,单侧油缸的活塞比两侧油缸的活塞要长,也增大了油缸的散热面积,因此制动液温度比用固定钳时低3050,气化的可能性较小
35、。但由于制动钳体是浮动的,必须设法减少滑动处或摆动中心处的摩擦、磨损和噪声。 2.3 盘式和鼓式制动器比较与鼓式制动器相比,盘式制动器的优点有:1)热稳定性较好。这是因为制动盘对摩擦衬块无摩擦增力作用,还因为制动摩擦衬块的尺寸不长,其工作表面的面积仅为制动盘面积的12%6%,故散热性较好。2)水稳定性较好。因为制动衬块对盘的单位压力高,易将水挤出,同时在离心力的作用下沾水后也易于甩掉,再加上衬块对盘的擦拭作用,因而,出水后只需经一、二次制动即能恢复正常;而鼓式制动器则需经过十余次制动方能恢复正常制动效能。3)制动稳定性好。盘式制动器的制动力矩与制动油缸的活塞推力及摩擦系数成线性关系,再加上无自
36、行增势作用,因此在制动过程中制动力矩增长较和缓,与鼓式制动器相比,能保证高的制动稳定性。4)制动力矩与汽车前进和后退行驶无关。5)在输出同样大小的制动力矩的条件下,盘式制动器的质量和尺寸比鼓式要小。6)盘式的摩擦衬块比鼓式的摩擦衬片在磨损后更易更换,结构也较简单,维修保养容易。7)制动盘与摩擦衬块间的间隙小(0.050.15mm),这就缩短了油缸活塞的操作时间,并使制动驱动机构的力传动比有增大的可能。8)制动盘的热膨胀不会像制动鼓热膨胀那样引起制动踏板行程损失,这也使间隙自动调整装置的设计可以简化。9)易于构成多回路制动驱动系统,使系统有较好的可靠性和安全性,以保证汽车在任何车速下各车轮都能均
37、匀一致地平稳制动。10)能方便地实现制动器磨损报警,以便及时更换摩擦衬块。盘式制动器的主要缺点是难以完全防止尘污和锈蚀(但封闭的多片全盘式制动器除外);兼作驻车制动器时,所需附加的驻车制动驱动机构较复杂,因此有的汽车采用前轮为盘式后轮为鼓式的制动系统;另外,由于无自行增势作用,制动效能较低,中型轿车采用时需加力装置。盘式制动器尤其是浮动钳式盘式制动器已十分广泛地用于轿车的前轮。与鼓式后轮制动器配合,也可使后轮制动器较容易地附加驻车制动的驱动机构,兼作驻车制动器之用。有些轿车的前、后轮都采用盘式制动器,主要是为了保持制动力分配系数的稳定。本次设计的是桑塔纳2000GSI的前轮制动器,综合考虑各种
38、因素,通过盘式制动器和鼓式制动器以及固定钳盘式和浮动钳盘式制动器的比较,最后选择为滑动钳盘式制动器。第3章 制动系的主要参数及其选择对汽车制动性能有着重要影响的制动系参数有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动器因数等。3.1 制动力与制动力分配系数汽车制动时,如果忽略路面对车轮的滚动阻力矩和汽车回转质量的惯性力矩,则任一角速度>0的车轮,其力矩平衡方程为: (3-1)式中:制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N.m;地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称为地面制动力,其方向与汽车行驶方向相
39、反,N;车轮有效半径,m。令 (3-2)并称之为制动器制动力,它是在轮胎周缘克服制动器摩擦力矩所需的力,因此又称为制动周缘力。与地面制动力的方向相反,当车轮角速度>0时,大小亦相等,且仅由制动器结构参数所决定。即取决于制动器的结构型式、尺寸、摩擦副的摩擦系数及车轮有效半径等,并与制动踏板力即制动系的液压或气压成正比。当加大踏板力以加大,和均随之增大。但地面制动力受着附着条件的限制,其值不可能大于附着力,即 (3-3)或 (3-4)式中:轮胎与地面间的附着系数; Z地面对车轮的法向反力。当制动器制动力和地面制动力达到附着力值时,车轮即被抱死并在地面上滑移。此后制动力矩即表现为静摩擦力矩,而
40、即成为与相平衡以阻止车轮再旋转的周缘力的极限值。当制动到=0以后,地面制动力达到附着力值后就不再增大,而制动器制动力由于踏板力的增大使摩擦力矩增大而继续上升(见图3.1)。 图3.1 制动力与踏板力的关系 图3.2 制动时的汽车受力图根据图3.2汽车制动时的整车受力分析,考虑到制动时的轴荷转移,可求得地面对前、后轴车轮的法向反力Z1,Z2为: (3-5)式中:G汽车所受重力;L汽车轴距;汽车质心离前轴距离;汽车质心离后轴距离;汽车质心高度;g重力加速度;-汽车制动减速度。 汽车总的地面制动力为 (3-6)式中: q()制动强度,亦称比减速度或比制动力;,前后轴车轮的地面制动力。由以上两式可求得
41、前、后轴车轮附着力为 (3-7)上式表明:汽车在附着系数为任意确定值的路面上制动时,各轴附着力即极限制动力并非为常数,而是制动强度q或总制动力的函数。当汽车各车轮制动器的制动力足够时,根据汽车前、后轴的轴荷分配,前、后车轮制动器制动力的分配、道路附着系数和坡度情况等,制动过程可能出现的情况有三种,即(1)前轮先抱死拖滑,然后后轮再抱死拖滑;(2)后轮先抱死拖滑,然后前轮再抱死拖滑;(3)前、后轮同时抱死拖滑。在以上三种情况中,显然是最后一种情况的附着条件利用得最好。由式(6)、式(7)不难求得在任何附着系数的路面上,前、后车轮同时抱死即前、后轴车轮附着力同时被充分利用的条件是 (3-8)式中:
42、 前轴车轮的制动器制动力,;后轴车轮的制动器制动力,;前轴车轮的地面制动力;后轴车轮的地面制动力;,地面对前、后轴车轮的法向反力;G汽车重力;,汽车质心离前、后轴距离;汽车质心高度。由式(8)可知,前、后车轮同时抱死时,前、后轮制动器的制动力,是的函数。由式(8)中消去,得 (3-9)式中: L汽车的轴距。将上式绘成以,为坐标的曲线,即为理想的前、后轮制动器制动力分配曲线,简称I曲线,如图25所示。如果汽车前、后制动器的制动力,能按I曲线的规律分配,则能保证汽车在任何附着系数的路面上制动时,都能使前、后车轮同时抱死。然而,目前大多数两轴汽车尤其是货车的前、后制动器制动力之比值为一定值,并以前制
43、动与汽车总制动力之比来表明分配的比例,称为汽车制动器制动力分配系数: (3-10)又由于在附着条件所限定的范围内,地面制动力在数值上等于相应的制动周缘力,故又可通称为制动力分配系数。3.2 同步附着系数由式(10)可得 (3-11)上式在图3.3中是一条通过坐标原点且斜率为(1-)/的直线,它是具有制动器制动力分配系数为的汽车的实际前、后制动器制动力分配线,简称线。图中线与I曲线交于B点,可求出B点处的附着系数=,则称线与I曲线交点处的附着系数为同步附着系数。它是汽车制动性能的一个重要参数,由汽车结构参数所决定。同步附着系数的计算公式是: (3-12)图3.3 某载货汽车的I曲线与线对于前、后
44、制动器制动力为固定比值的汽车,只有在附着系数等于同步附着系数的路面上,前、后车轮制动器才会同时抱死。当汽车在不同值的路面上制动时,可能有以下情况: (1)当<,线位于I曲线下方,制动时总是前轮先抱死。它虽是一种稳定工况,但丧失转向能力。(2)当>,线位于I曲线上方,制动时总是后轮先抱死,这时容易发生后轴侧滑使汽车失去方向稳定性。(3)当=,制动时汽车前、后轮同时抱死,是一种稳定工况,但也失去转向能力。为了防止汽车的前轮失去转向能力和后轮产生侧滑,希望在制动过程中,在即将出现车轮抱死但尚无任何车轮抱死时的制动减速度,为该车可能产生的最高减速度。分析表明,汽车在同步附着系数的路面上制动
45、(前、后车轮同时抱死)时,其制动减速度为du/dt=qg=g,即q=,q为制动强度。而在其他附着系数的路面上制动时,达到前轮或后轮即将抱死时的制动强度q<,这表明只有在=的路面上,地面的附着条件才得到充分利用。附着条件的利用情况可用附着系数利用率 (或附着力利用率)来表达,可定义为: (3-13)式中: 汽车总的地面制动力;G汽车所受重力; q制动强度。当=时, q=,=1,利用率最高。直至20世纪50年代,当时道路条件还不很好,汽车行驶速度也不很高,后轮抱死侧滑的后果也不显得像前轮抱死丧失转向能力那样严重,因此往往将值定得较低,即处于常遇附着系数范围的中间偏低区段。但当今道路条件大为改
46、善,汽车行驶速度也大为提高,因而汽车因制动时后轮先抱死引起的后果十分严重。由于车速高,它不仅会引起侧滑甩尾甚至会调头而丧失操纵稳定性。后轮先抱死的情况是最不希望发生的。因此各类轿车和一般载货汽车的值有增大的趋势。如何选择同步附着系数,是采用恒定前后制动力分配比的汽车制动系设计中的一个较重要的问题。在汽车总重和质心位置已定的条件下,的数值就决定了前后制动力的分配比。的选择与很多因数有关。首先,所选的应使得在常用路面上,附着系数利用率较高。具体而言,若主要是在较好的路面上行驶,则选的值可偏高些,反之可偏低些。从紧急制动的观点出发,值宜取高些。汽车若常带挂车行驶或常在山区行驶,值宜取低些。此外,的选
47、择还与汽车的操纵性、稳定性的具体要求有关,与汽车的载荷情况也有关。总之,的选择是一个综合性的问题,上述各因数对的要求往往是相互矛盾的。因此,不可能选一尽善尽美的值,只有根据具体条件的不同,而有不同的侧重点。根据设计经验,空满载的同步附着系数和应在下列范围内:轿车:0.650.80;轻型客车、轻型货车:0.550.70;大型客车及中重型货车:0.450.65。现代汽车多装有比例阀或感载比例阀等制动力调节装置,可根据制动强度、载荷等因素来改变前、后制动器制动力的比值,使之接近于理想制动力分配曲线。为保证汽车制动时的方向稳定性和有足够的附着系数利用率,联合国欧洲经济委员会(ECE)的制动法规规定,在
48、各种载荷情况下,轿车在0.15q0.8,其他汽车在0.15q0.3的范围内,前轮均应能先抱死;在车轮尚未抱死的情况下,在0.20.8的范围内,必须满足q0.1+0.85(-0.2)。3.3 制动强度和附着系数利用率上面已给出了制动强度q和附着系数利用率的定义式,如式(6)和式(12)所示。下面再讨论一下当=、<和>时的q和。根据所定的同步附着系数,可以由式(8)及式 (10)求得 (3-14) (3-15)进而求得 (3-16) (3-17)当=时,故,q=;=1当<时,可能得到的最大总制动力取决于前轮刚刚首先抱死的条件,即。由式(6)、式(7)、式(12)和式(15)得 (
49、3-18) (3-19) (3-20)当>时, 可能得到的最大总制动力取决于后轮刚刚首先抱死的条件,即。由式(6)、式(7)、式 (12)和式(16)得 (3-21) (3-22) (3-23)对于值恒定的汽车,为使其在常遇附着系数范围内不致过低,其值总是选得小于可能遇到的最大附着系数。所以在>的良好路面上紧急制动时,总是后轮先抱死。3.4 制动器最大制动力矩应合理地确定前、后轮制动器的制动力矩,以保证汽车有良好的制动效能和稳定性。最大制动力是在汽车附着质量被完全利用的条件下获得的,这时制动力与地面作用于车轮的法向力,成正比。由式(9)可知,双轴汽车前、后车轮附着力同时被充分利用或
50、前、后轮同时抱死时的制动力之比为式中: ,汽车质心离前、后轴距离;同步附着系数;汽车质心高度。通常,上式的比值:轿车约为1.31.6;货车约为0.50.7。制动器所能产生的制动力矩,受车轮的计算力矩所制约,即 式中:前轴制动器的制动力,;后轴制动器的制动力,;作用于前轴车轮上的地面法向反力;作用于后轴车轮上的地面法向反力;车轮有效半径。对于常遇到的道路条件较差、车速较低因而选取了较小的同步附着系数值的汽车,为了保证在的良好的路面上(例如=0.7)能够制动到后轴和前轴先后抱死滑移(此时制动强度),前、后轴的车轮制动器所能产生的最大制动力力矩为 (3-24) (3-25)对于选取较大值的各类汽车,
51、则应从保证汽车制动时的稳定性出发,来确定各轴的最大制动力矩。当时,相应的极限制动强度,故所需的后轴和前轴的最大制动力矩为 (3-26) (3-27)式中: 该车所能遇到的最大附着系数;q制动强度,由式(22)确定;车轮有效半径。一个车轮制动器应有的最大制动力矩为按上列公式计算结果的半值。3.5 制动器因数式(2-1)已给出了制动器因数BF的表达式(即,),它表示制动器的效能,因此又称为制动器效能因数。其实质是制动器在单位输入压力或力的作用下所能输出的力或力矩,用于评比不同结构型式的制动器的效能。制动器因数可定义为在制动鼓或制动盘的作用半径上所产生的摩擦力与输入力之比,即 (3-28)式中:制动
52、器的摩擦力矩;R制动鼓或制动盘的作用半径;P输入力,一般取加于两制动蹄的张开力(或加于两制动块的压紧力)的平均值为输入力。对于钳盘式制动器,设两侧制动块对制动盘的压紧力均为P,则制动盘在其两侧工作面的作用半径上所受的摩擦力为2P,此处为盘与制动衬块间的摩擦系数,于是钳盘式制动器的制动器因数为 (3-29)第4章 制动器的设计计算4.1 桑塔纳2000GSI的设计参数装备质量 1140kg满载质量 1560kg轴荷分配空载时 前轴 640kg 后轴 500kg满载时 前轴 735kg 后轴 825kg质心高度 空载时 550mm 满载时 586mm质心距前轴的距离空载时 1164.9mm 满载时 1404.6mm质心距后轴的距离空载时 1491.1mm 满载时 1251.4mm轴距 2656mm轮胎半径 295mm 轮辋外径 14in4.2 盘式制动器主要参数的确定1.制动盘直径D制动盘直径D希望尽量大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 萝卜书摘婚后协议书
- 代写合伙人合同协议书
- 2025年遵义旅游知识竞赛试题及答案(共290题)
- 2025年高考语文文言文阅读满分技巧
- MySQL高可用性方案解析试题及答案
- 高中生物选修三模块检测卷:2025年秋季学期期末复习重点试题解析
- 内孔磨削技术培训
- 护理布置睡眠环境
- 初中物理第二章 运动与能量综合与测试习题
- 2025年注册计量师(一级)计量专业模拟试题:测量误差案例分析及误差分析案例分析
- 驻足思考瞬间整理思路并有力表达完整版
- 《艺术概论》章节测试及答案
- 普通诊所污水、污物、粪便处理方案及周边环境情况说明
- 阑尾腹腔镜下阑尾切除术护理查房
- QC小组培训教材流程
- 青岛科技大学Python程序设计期末复习题
- 无菌技术操作培训-课件
- 开曼群岛公司章程
- 结合工作实际谈如何改进工作作风、提高工作效率、改进工作方法六篇
- 医院医学伦理委员会相关表格模版(共3个)
- 中复神鹰碳纤维西宁有限公司年产14000吨高性能碳纤维及配套原丝建设项目环评报告
评论
0/150
提交评论