方波三角波正玄波_第1页
方波三角波正玄波_第2页
方波三角波正玄波_第3页
方波三角波正玄波_第4页
方波三角波正玄波_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、四川航天职业技术学院电子工程系课程设计专业名称: 飞行器电子装配技术 课程名称: 模拟电子技术课程设计 课题名称: 三角波-方波振荡器 设计人员: 龙 思 江 指导教师: 罗 庚 2012年 6月 7日课程设计报告书评阅页课题名称: 三角波-方波振荡器班 级: G11电装姓 名: 龙思江 2012 年 6月 7日指导教师评语:考核成绩: 指导教师签名:201 年 月 日课程设计任务书一、课题名称:三角波-方波振荡器二、技术指标:1掌握电子系统的一般设计方法2掌握模拟IC器件的应用3培养综合应用所学知识来指导实践的能力4掌握常用元器件的识别和测试5熟悉常用仪表,了解电路调试的基本方法三、要求:1

2、、设计、组装、调试函数发生器2、输出波形:正弦波、方波、三角波;3、要有稳定的输出波形。4、频率范围: 100HZ1kHZ, 1HZ10kHZ;输出电压: 方波VP-P24V , 三角波VP-P6V; 波形特性: 方波tr30s(1KHZ ,最大输出时),三角波2指导教师:罗 庚学 生:龙 思 江电子工程系2012 年 6 月 7 日 摘 要 本文通过介绍一种电路的连接,实现函数发生器的基本功能。将其接 入电源,并通过在示波器上观察波形及数据,得到结果。 电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角 波-正弦波转换电路看到正弦波,得到想要的信号。 NI Multisim软件结合

3、了直观的捕捉和功能强大的仿真,能够快速、 轻松、高效地对电路进行设计和验证。凭借NI Multisim,你可以立即创 建具有完整组建库的电路图,并利用工业标准SPICE模拟器模仿电路行 为。本设计就是利用Multisim软件进行电路的绘制并进行仿真。关键词:电源,波形,比较器,积分器,转换电路,Multisim目 录1 函数发生器的总方案及原理框图1.1 电路设计原理框图1.2 电路设计类型2设计的目的及任务2.1 课程设计的目的2.2 课程设计的任务与要求2.3 课程设计的技术指标3部分选择电路及其原理3.1集成函数发生器8038简介3.2 方波-三角波转换电路的工作原理4 电路仿真4.1

4、方波-三角波发生电路的仿真4.2 三角波-正弦波转换电路的仿真4.3正弦波-方波-三角波电路输出5电路的原理5.1电路图及元件原理5.2 PCB布线图5.3 PCB板三维图6心得体会7 参考文献1函数发生器总方案及原理框图一、主原理框图1.1 555定时器的工作原理 555定时器是一种功能强大的模拟数字混合集成电路,其组成电路框图如图22.32所示。555定时器有二个比较器A1和A2,有一个RS触发器,R和S高电平有效。三极管VT1对清零起跟随作用,起缓冲作用。三极管VT2是放电管,将对外电路的元件提供放电通路。比较器的输入端有一个由三个5kW电阻组成的分压器,由此可以获得 和 两个分压值,一

5、般称为阈值。555定时器的1脚是接地端GND,2脚是低触发端TL,3脚是输出端OUT,4脚是清除端Rd,5脚是电压控制端CV,6脚是高触发端TH,7脚是放电端DIS,8脚是电源端VCC。555定时器的输出端电流可以达到200mA,因此可以直接驱动与这个电流数值相当的负载,如继电器、扬声器、发光二极管等。2、单稳类电路 单稳工作方式,它可分为3种。见图示。第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。第2种(图2)是脉冲启动型单稳

6、,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。电路的2端不带任何元件,具有最简单的形式;电路则带有一个RC微分电路。第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为;使用晶体管、运放放大器等辅助器件的电路为。图中列出了2个常用电路。1.2 函数发生器的总方案 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管),也可以

7、采用集成电路(如单片函数发生器模块8038)。为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波三角波正弦波函数发生器的设计方法。产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波三角波,再将三角波变换成正弦波的电路设计方法,本课题中函数发生器电路组成框图如下所示:由比较器和积分器组成方波三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成

8、。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。2课程设计的目的和设计的任务2.1 设计目的1掌握电子系统的一般设计方法2掌握模拟IC器件的应用3培养综合应用所学知识来指导实践的能力4掌握常用元器件的识别和测试 5熟悉常用仪表,了解电路调试的基本方法2.2设计任务 设计方波三角波正弦波函数信号发生器2.3课程设计的要求及技术指标1、设计、组装、调试函数发生器2、输出波形:正弦波、方波、三角波;3、要有稳定的输出波形。4、频率范围: 100HZ1

9、kHZ, 1HZ10kHZ;输出电压: 方波VP-P24V , 三角波VP-P6V;波形特性: 方波tr30s(1KHZ ,最大输出时),三角波2 3、部分选择电路及其原理1、集成函数发生器8038简介18038的工作原理由手册和有关资料可看出,8038由恒流源I1、I2,电压比较器C1、C2和触发器等组成。其内部原理电路框图和外部引脚排列分别如图XX_01和图XX_02所示。1. 正弦波线性调节;2. 正弦波输出;3. 三角波输出;4. 恒流源调节;5. 恒流源调节;6. 正电源;7. 调频偏置电压;8. 调频控制输入端;9. 方波输出(集电极开路输出); 10. 外接电容;11. 负电源或

10、接地;12.正弦波线性调节;13、14. 空脚2. 如图所示为采用8038的函数发生电路。采用集成电路芯片8038构成的函数发生器可同时获得方波、三角波和正弦波。三角波通过电容恒流放电而直接形成;方波由控制信号获得;正弦波由三角波通过折线近似电路获得。通过这种方式获得的正弦波不是平滑曲线,其失真率为1左右,可满足一般用途的需要。电路中的电位器PR1用于调整频率,调整范围为20Hz到20kHz。PR2用于调整波形的失真率,PR3用于调整波形的占空比。在图XX_01中,电压比较器C1、C2的门限电压分别为2VR/3和VR/3( 其中VR=VCC+VEE),电流源I1和I2的大小可通过外接电阻调节,

11、且I2必须大于I1。当触发器的Q端输出为低电平时,它控制开关S使电流源I2断开。而电流源I1则向外接电容C充电,使电容两端电压VC随时间线性上升,当VC上升到VC=2VR/3 时,比较器C1输出发生跳变,使触发器输出Q端由低电平变为高电平,控制开关S使电流源I2接通。由于I2>I1 ,因此电容C放电,VC随时间线性下降。当VC下降到VC<=Vr比较器C2输出发生跳变,使触发器输出端Q又由高电平变为低电平,I2再次断开,I1再次向C充电,VC时间线性上升。如此周而复始,产生振荡。若I2=2I1 ,VC时间与下降时间相等,就产生三角波输出到脚3。而触发器输出的方波,经缓冲器输出到脚9。

12、三角波经正弦波变换器变成正弦波后由脚2输出。当I1<I2<2I1 时,VC升时间与下降时间不相等,管脚3输出锯齿波。因此,8038能输出方波、三角波、正弦波和锯齿波等四种不同的波形。有关触发器的工作原理见数字部分。图中的触发器,当R端为高电平、S端为低电平时,Q端输出低电平;反之,则Q端为高电平。28038的典型应用由图XX_02可见,管脚8为调频电压控制输入端,管脚7输出调频偏置电压,其值(指管脚6与7之间的电压)是(VCC+VEE/5) ,它可作为管脚8的输入电压。此外,该器件的方波输出端为集电极开路形式,一般需在正电源与9脚之间外接一电阻,其值常选用10kW左右,如图XX_0

13、3所示。当电位器Rp1动端在中间位置,并且图中管脚8与7短接时,管脚9、3和2的输出分别为方波、三角波和正弦波。电路的振荡频率f约为0.3/C(R1+RP1/2) 。调节RP1、RP2可使正弦波的失真达到较理想的程度。 由于8038价格比较昂贵,因而不使用该种电路。2、通用函数发生器电路图信号发生器可分为三部分:正弦波及三角波发生器、计数器和脉冲及斜波发生器。如图所示,XR2206采用压控振荡器,频率调整通过电位器RP5(10k)实现,很容易调整到频率千分之一以内。如果改变固定电阻R3的阻值,也可改变RP5的阻值。正弦波和三角波电路和其它同类仪器不同,衰减开关S1变信号的幅值,不影响偏置电压。

14、根据需要的固定衰减(到20dB,电压比为10),用R6,并联固定电阻R7调整。也可接变阻器调整电阻。尽管调整电阻较贵,但易于实现。 R2206是一种单片集成函数发生器,能产生高稳定度和高精度的正弦波、三角波、矩形波等,这些输出信号可受外加电压控制、其工作频率由外部参数设定。它的频率工作范围是0.01Hz1MHz,正弦波的失真度为0.5,图2所示为采用XR2206组成的FSK信号发生器的基本电路。    XR2206内部的VCO(压控振荡器)电路通过定时电容Ct分别与两个接地电阻Rt1和Rt2相连,VCO的电流开关受输入到9脚的TTL电平控制,2脚输出调制的正弦波信

15、号。电路的振荡频率由电容Ct和电阻Rt1、Rt2决定。 由于电路非常复杂,而且也没有很搞的要求,即使满足,也没有其他电路的标准,有其他波的干扰。 4 .电路仿真4.1产生方波4.2产生三角波4.3产生正弦波4.4三个波形进行比较4.5电路仿真5各组成部分的工作原理一、这是制作要求的电路原理图1、555定时器是一种集模拟,数字于一体的中规模集成电路。它不仅用于信号的产生和变换,还常用于控制与检测。555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面1.

16、下面是IC555的各个引脚的作用:(TR)为低电平触发端。该端输入电压高于1/3UCC时,比较器C2输出为“1”,当输入电压低于1/3UCC时,比较器C2输出为“0”。(u0)为输出端。输出为“1”时的电压比电源电压UCC低2V左右。输出最大电流为200mA。()为复位端。在此端输入负脉冲(“0”电平,低于0.7V)可使触发器直接置“0”,正常工作时,应将它接“1”(接+UCC)。(CO)为电压控制端。静态时,此端电位为2/3UCC。若在此端外加直流电压,可改变分压器各点电位值。在没有其他外部联线时,应在该端与地之间接入0.01µF的电容,以防干扰引入比较器C1的同相端。(TH)为高

17、电平触发端。该输入端电压低于2/3UCC时,比较器C1输出为“1”,当输入电压高于2/3UCC时,比较器C1输出为“0”。(D)为放电端,当输出U0=“0”,即触发器= 1时,放电晶体管T导通,相当7端对地短接。当u0 为“1”,即= 0,T截止,7端与地隔离。和分别为电源端和接地端。CMOS555集成定时器的电源电压在4.5V18V范围内使用。2、5 定时器的功能主要由两个比较器决定。两个比较器的输出电压控制 RS 触发器和放电管的状态。在电源与地之间加上电压,当 5 脚悬空时,则电压比较器 A1 的反相输入端的电压为 2VCC /3,A2 的同相输入端的电压为VCC /3。若触发输入端 T

18、R 的电压小于VCC /3,则比较器 A2 的输出为 1,可使 RS 触发器置 1,使输出端 OUT=1。如果阈值输入端 TH 的电压大于 2VCC/3,同时 TR 端的电压大于VCC /3,则 A1 的输出为 1,A2 的输出为 0,可将 RS 触发器置 0,使输出为 0 电平。表5.1  555集成定时器的功能表RDTHTRu0T0××0导通1大于2/3UCC大于1/3UCC0导通1小于2/3UCC小于1/3UCC1截止1小于2/3UCC大于1/3UCC保持保持2.工作状况说明555定时器×1 CD4060计数器×1 1555集成定时器 5

19、55集成定时器是模拟功能和数字逻辑功能相结合的一种双极型中规模集成器件。外加电阻、电容可以组成性能稳定而精确的多谐振荡器、单稳电路、施密特触发器等。它是由上、下两个电压比较器、三个5k电阻、一个RS触发器、一个放电三极管 T以及功率输出级组成。比较器 C1的同相输入端接到由三个5 k电阻组成的分压网络的2/3Vcc处,反相输入端为阀值电压输入端。比较器C2的反相输入端接到分压电阻网络的1/3Vcc处,同相输入端为触发电压输入端,用来启动电路。两个比较器的输出端控制RS触发器。RS触发器设置有复位端 ,当复位端处干低电平时,输出为低电平。控制电压端是比较器C1的基准电压端,通过外接元件或电压源可

20、改变控制端的电压值,即可改变比较器C1、C2的参考电压。不用时可将它与地之间接一个O01F的电容,以防止干扰电压引入。555的电源电压范围是+4.5+18V,输出电流可达100200mA,能直接驱动小型电机、继电器和低阻抗扬声器。CMOS集成定时器CC7555的功能和TTL集成定时电路完全一样,但驱动能力小一些,内部结构也不同,555定时器的功能表见表14-1。图 14-1 555电路引脚图 图14-2 TTL电路555电路结构表14-1 555芯片功能表触发阈值复位放电端输出 H导通L H原状态 H截止H L导通L 2555定时器的应用 单稳态电路 单稳态电路的组成和波形如图14-3所示。当

21、电源接通后,Vcc通过电阻R向电容C充电,待电容上电压Vc上升到2/3Vcc时,RS触发器置0,即输出Vo=0,同时电容C通过三极管T放电,RS触发器输入变位1、1,输出保持不变。当触发端的外接输入信号电压Vi1/3Vcc时,RS触发器置1,即输出Vo=1,同时,三极管T截止。电源Vcc再次通过R向C充电。输出电压维持高电平的时间取决于RC的充电时间,待电容上电压Vc上升到2/3Vcc时,RS触发器置0,即输出Vo=0,当t=tW时,电容上的充电电压为;所以输出电压的脉宽 tW=RCln31.1RC 一般R取1k10M,C1000pF。值得注意的是:t的重复周期必须大于tW,才能保证每一个负脉

22、冲起作用。由上式可知,单稳态电路的暂态时间与VCC无关。因此用555定时器组成的单稳电路可以作为精密定时器。图 14-3单稳态电路的电路图和波形图 多谐振荡器多谐振荡器的电路图和波形图如图14-4所示。电源接通后,Vcc通过电阻R1、R2向电容C充电。当电容上电VC=2/3Vcc时,阀值输入端受到触发,比较器C1翻转,输出电压Vo=0,同时放电管T导通,电容C通过R2放电;当电容上电压Vc=1/3Vcc时,比较器C2输出0,输出电压Vo=1。C放电终止、又重新开始充电,周而复始,形成振荡。其振荡周期与充放电的时间有关:充电时间: 放电时间: 振荡周期:T=tPH+tPL0.7(R1+2R2)C

23、 振荡频率:f=1/T= 占空系数: 当R2>>R1时,占空系数近似为50。图14-4 多谐振荡器的电路图和波形图由上分析可知: a)电路的振荡周期T、占空系数D,仅与外接元件R1、R2和C有关,不受电源电压变化的影响。 b)改变R1、R2,即可改变占空系数,其值可在较大范围内调节。 c) 改变C的值,可单独改变周期,而不影响占空系数。 另外,复位端也可输入1个控制信号。复位端为低电平时,电路停振。 施密特触发器施密特触发器电路图和波形图如图14-5所示,其回差电压为1/3Vcc。当输入电压大于2/3Vcc时输出低电平,当输入电压小于1/3Vcc时输出高电平,若在电压控制端外接可调

24、电压Vco(1.55V),可以改变回差电压VT。施密特触发器可方便的地把非矩形波变换为矩形波,如三角波到方波。施密特触发器可以将一个不规则的矩形波转换为规则的矩形波。施密特触发器可以选择幅度达到要求的脉冲,虑掉小幅的杂波。图14-5 施密特触发器电路图和波形图 3. CD4060是14位二进制串行计数器,其引脚图如图146。 由14级二进制计数器和非门组成的振荡器组成,外接振荡电路可以做时钟源。图66CD4060引脚图 :时钟输入端,下降沿计数;CP0:时钟输出端; :反向时钟输出端。 RD清零端为异步清零。 作为2Hz、4Hz、8Hz等时钟脉冲源时,典型接线方法如图14-7,从计数器输出端可

25、以得到多种32.678kHz的分频脉冲。图6-7 4060作为时钟源 可以加上RC回路构成时钟源。如图14-8,其中T1.4RC 图6-8 RC回路作为时钟源图6-6 CD4060引脚图 4. CD4017是十进制计数器/时序译码器,内部有一个十进制计数器和一个时序译码器,图14-9是其引脚图,CP为时钟脉冲输入,上升沿计数, 为允许计数,低电平有效,计数时Q0Q9的十个输出端依次为高电平,RD为异步清零端,RD=1时Q0=1。计数器的输出Q0Q4=1时进位Co=1,Q5Q9=1时Co=0。图69CD4017引脚图普通计数器作为分频时,从计数器输出引脚可以得到CP的2、4、8分频的信号,用N进

26、制计数器可以得到N分频信号。依此原理用CD4017可以方便得到210分频信号,将CD4017输出端Q2Q9分别与复位端相连,可以构成29的分频。如图14-10所示构成3分频,当高电平移到Q3时,计数器复位,重新计数,3分频信号可以从Q0Q2中一个输出,不接反馈复位则可以得到10分频。2.2 RC积分电路原理电路结构如图,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。 输出信号与输入信号的积分成正比的电路,

27、称为积分电路。从图得,Uo=Uc=(1/C)icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RCTk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故Uo=(1/c)icdt=(1/RC)icdt这就是输出Uo正比于输入Ui的积分(icdt)RC电路的积分条件:RCTk5.1 PCB原理图利用DXP 2004制图软件进行制图。打开DXP 2004制图软件,创建一个项目:PCB项目,然后在这个PCB项目里创建一个原理图和一个PCB文件。在原理图上,从软件的元件库里调出所需元件,按电路图接好线,可得如图11所示的正弦波、三角波、方波原理图。 图11 正弦波、三角波、方波产生原理图5.2PCB布线图将DXP 2004制图软件中的PCB原理图封装,布线。点击软件菜单栏中“设计”按钮,然后点击其下的“update PCB Document.PCB2PcbDoc”按钮,就将PCB原理图封装,布线到创建的PCB文件上,如图12所示的PCB布线图。图12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论