



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、靖远县北滩乡杜寨初级中学集体备课教案学生预习指导案课 题: 勾股定理的应用 第 1 课时学习目标:1.通过观察图形,探索图形间的关系,发展学生的空间观念2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点学习重、难点:在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想教 学 内 容活动设计备 注第一环节:情境引入情景1:多媒体展示:提出问题:从二教楼到综合楼怎样走最近?情景2
2、:如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?AAA学生汇总了四种方案: (1) (2) (3) (4)得出结论:利用展开图中两点之间,线段最短解决问题在这个环节中,可让学生沿母线剪开圆柱体,具体观察接下来后提问:怎样计算AB?在RtAAB中,利用勾股定理可得,若已知圆柱体高为12cm,底面半径为3cm,取3,则 方法提炼:解决实际问题的关键是根据实际问题建立相应的数学模型,解决这一类几何型问题的具体步骤大致可以归纳如下:1审题分析实际问题;2建模建立相应的数学模型;3求解运用勾股定理计算
3、;4检验是否符合实际问题的真实性第二环节:做一做:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,(1)你能替他想办法完成任务吗?(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?解答:(2)AD和AB垂直第三环节:举一反三1如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到B?BABCBA解:如图
4、,在RtABC中: 500202 .不能在20 s内从A爬到B.2在我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?解答:设水池的水深AC为x尺,则这根芦苇长为AD=AB=(x+1)尺,在直角三角形ABC中,BC=5尺.由勾股定理得:BC2+AC2=AB2.即 52+ x2=(x+1)2.25+x2= x2+2x+1.2x=24. x=12,x+1=13答:水池的水深12尺,这根芦苇长13
5、尺第七环节:布置作业1课本习题14第1,2,3题2如图是学校的旗杆,旗杆上的绳子垂到了地面,并多出了一段,现在老师想知道旗杆的高度,你能帮老师想个办法吗?请你与同伴交流设计方案?通过情景1复习公理:两点之间线段最短;情景的创设引入新课,激发学生探究热情本环节的探究把圆柱侧面寻最短路径拓展到了圆柱表面,目的仅仅是让学生感知最短路径的不同存在可能但这一拓展使学生无法去论证最短路径究竟是哪条因此教学时因该在学生在圆柱表面感知后,把探究集中到对圆柱侧面最短路径的探究上第1题旨在对“蚂蚁怎样走最近”进行拓展,从圆柱侧面到棱柱侧面,都是将空间问题平面化;第2题,学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;运用方程的思想并利用勾股定理建立方程小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-江西-江西水文勘测工四级(中级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西林木种苗工四级(中级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-安徽-安徽食品检验工一级(高级技师)历年参考题库典型考点含答案解析
- 2020-2025年二级建造师之二建建筑工程实务自我提分评估(附答案)
- 2025年事业单位工勤技能-北京-北京水文勘测工四级(中级工)历年参考题库含答案解析
- 2025年中级卫生职称-主治医师-肿瘤放射治疗学(中级)代码:343历年参考题库典型考点含答案解析
- 2025年通信专业技术-通信专业技术(中级)-中级通信专业技术(全科)历年参考题库含答案解析(5套)
- 2025年药学职称考试-辽宁省-辽宁省药学(初级中药师)历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-热工职业-热工自动装置检修职业技能鉴定(初级)历年参考题库含答案解析(5套)
- 热控维护基本知识培训课件
- DBJ50-T-200-2024 建筑桩基础技术标准
- 智慧港口等级评价指南 干散货码头(T-CPHA 27-2023)
- 2025-2030中国风力涡轮机检查无人机行业市场发展趋势与前景展望战略研究报告
- 设备、管道、钢结构施工方案
- EPC工程总承包设计阶段质量控制措施
- 2023-2024学年北师大版小学数学一升二开学摸底考试测试卷及答案(共三套)
- 七下科学第四章知识点
- 起搏器围手术期的护理
- 2025年中国建设银行信用贷款协议
- 不锈钢栏杆、扶手合同范本
- 《常见精神障碍诊断与治疗》课件
评论
0/150
提交评论