




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第第2节基本不等式及其应用节基本不等式及其应用最新考纲1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.知 识 梳 理ab(1)基本不等式成立的条件:a0,b0.(2)等号成立的条件:当且仅当_时取等号.(3)其中_称为正数a,b的算术平均数,_称为正数a,b的几何平均数.2.两个重要的不等式(1)a2b2_(a,bR),当且仅当ab时取等号.3.利用基本不等式求最值2abxy小xy大微点提醒基 础 自 测1.判断下列结论正误(在括号内打“”或“”)答案(1)(2)(3)(4)A.9 B.18 C.36 D.81答案AA.有最小值,且最小值为2B.有最大值,且最大值为
2、2C.有最小值,且最小值为2D.有最大值,且最大值为2答案D答案D5.(2018济宁一中月考)一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为_m,宽为_m时菜园面积最大.解析设矩形的长为x m,宽为y m.则x2y30,考点一利用基本不等式求最值多维探究角度1通过配凑法求最值角度2通过常数代换法求最值故2ab的最小值为8.答案8规律方法在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变
3、形,进行“1”的代换求目标函数最值.答案(1)B(2)1考点二基本不等式在实际问题中的应用规律方法1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.答案37.5考点三基本不等式的综合应用ana3(n3)d72(n3)2n1,(2)法一依题意画出图形,如图所示.易知SABDSBCDSABC,法二以B为原点,BD所在直线为x轴建立如图所示的平面直角坐标系,则D(1,0),ABc,BCa,答案(1)3(2)9规律方法基本不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是:1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用基本不等式求解,这是难点.2.要有利用基本不等式求最值的意识,善于把条件转化为能利用基本不等式的形式.3.检验等号是否成立,完成后续问题.【训练3】 (1)(2019厦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部队交通安全知识培训课件
- 学习路径规划-洞察及研究
- 【设计】高层住宅小区室外配套施工组织设计
- 部门保密培训课件
- 债权人利益分配策略-洞察及研究
- 边坡喷锚脚手架安全培训课件
- 基于循环经济的原料回收与再利用技术瓶颈突破
- 车队雨季安全培训课件
- 圆弧轨迹动态补偿算法在高速工况下的精度衰减机理研究
- 国际标准对接框架下刀片剪切参数数据库的跨地域知识迁移策略
- 公司内部程序文件(格式模版)
- 泛光施工招标文件
- 旅游策划实务整套课件完整版电子教案课件汇总(最新)
- 小学生汉字听写大赛题库
- DB23∕T 2661-2020 地热能供暖系统技术规程
- 人工挖孔桩施工监测监控措施
- 第一框 关爱他人
- 国家职业技能标准 (2021年版) 6-18-01-07 多工序数控机床操作调整工
- 办公楼加层改造施工组织设计(100页)
- 渗透检测培训教材(1)
- 空调专业常用英文词汇
评论
0/150
提交评论