




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、平面、空间两条直线知识梳理1.平面的基本性质,即三个公理及推论.2.公理4及等角定理.3.空间两条直线的位置关系有且只有三种,即平行、相交及异面.4.两条异面直线所成的角及距离,求作异面直线所成的角时,往往取题中的特殊点.点击双基1.若a,b是异面直线,则只需具备的条件是A.a平面,b平面,a与b不平行B.a平面,b平面,=l,a与b无公共点C.a直线c,bc=A,b与a不相交D.a平面,b 是的一条斜线答案:C2.如下图,直线a、b相交于点O且a、b成60°角,过点O与a、b都成60°角的直线有A.1条 B.2条 C.3条 D.4条解析:在a、b所确定的平面内有一条,平面
2、外有两条.答案:C3.如下图,正四面体SABC中,D为SC的中点,则BD与SA所成角的余弦值是A. B. C. D.解析:取AC的中点E,连结DE、BE,则DESA,BDE就是BD与SA所成的角.设SA=a,则BD=BE= a,DE= a,cosBDE= .答案:C5.正六棱柱ABCDEFA1B1C1D1E1F1的底面边长为1,侧棱长为,则这个棱柱的侧面对角线E1D与BC1所成的角是_.解析:连结FE1、FD,则由正六棱柱相关性质可得FE1BC1,在EFD中,EF=ED=1,FED=120°,FD=.在EFE1和EE1D中,易得E1F=E1D=,E1FD是等边三角形,FE1D=60&
3、#176;.而FE1D即为E1D与BC1所成的角.答案:60°说明:本题主要考查正六棱柱的性质及异面直线所成角的求法.典例剖析【例1】 如下图,四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DFFC=23,DHHA=23.求证:EF、GH、BD交于一点.证明:连结GE、HF,E、G分别为BC、AB的中点,GEAC.又DFFC=23,DHHA=23,HFAC.GEHF.故G、E、F、H四点共面.又EF与GH不能平行,EF与GH相交,设交点为O.则O面ABD,O面BCD,而平面ABD平面BCD=BD.EF、GH、BD交于一点.评述:证明线共点,常采用证两直线
4、的交点在第三条直线上的方法,而第三条直线又往往是两平面的交线.【例2】 A是BCD平面外的一点,E、F分别是BC、AD的中点,(1)求证:直线EF与BD是异面直线;(2)若ACBD,AC=BD,求EF与BD所成的角.(1)证明:用反证法.设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A、B、C、D在同一平面内,这与A是BCD平面外的一点相矛盾.故直线EF与BD是异面直线.(2)解:取CD的中点G,连结EG、FG,则EGBD,所以相交直线EF与EG所成的锐角或直角即为异面直线EF与BD所成的角.在RtEGF中,求得FEG=45°,即异面直线EF与
5、BD所成的角为45°.特别提示证明两条直线是异面直线常用反证法;求两条异面直线所成的角,首先要判断两条异面直线是否垂直,若垂直,则它们所成的角为90°;若不垂直,则利用平移法求角,一般的步骤是“作(找)证算”.注意,异面直线所成角的范围是(0,.【例3】 长方体ABCDA1B1C1D1中,已知AB=a,BC=b,AA1=c,且a>b,求:(1)下列异面直线之间的距离:AB与CC1;AB与A1C1;AB与B1C.(2)异面直线D1B与AC所成角的余弦值.(1)解:BC为异面直线AB与CC1的公垂线段,故AB与CC1的距离为b.AA1为异面直线AB与A1C1的公垂线段,故
6、AB与A1C1的距离为c.过B作BEB1C,垂足为E,则BE为异面直线AB与B1C的公垂线,BE=,即AB与B1C的距离为.(2)解法一:连结BD交AC于点O,取DD1的中点F,连结OF、AF,则OFD1B,AOF就是异面直线D1B与AC所成的角.AO=,OF= BD1=,AF=,在AOF中,cosAOF=.解法二:如下图,在原长方体的右侧补上一个同样的长方体,连结BG、D1G,则ACBG,D1BG(或其补角)为D1B与AC所成的角.BD1=,BG=,D1G=,在D1BG中,cosD1BG=,故所求的余弦值为.深化拓展利用中位线平移和利用补形平移是处理长方体中异面直线所成角的重要方法.【例4】
7、 设异面直线a与b所成的角为50°,O为空间一定点,试讨论,过点O与a、b所成的角都是(0°90°)的直线l有且仅有几条?解:过点O作a1a,b1b,则相交直线a1、b1确定一平面.a1与b1夹角为50°或130°,设直线OA与a1、b1均为角,作AB面于点B,BCa1于点C,BDb1于点D,记AOB=1,BOC=2(2=25°或65°),则有cos=cos1·cos2.因为0°190°,所以0coscos2.当2=25°时,由0coscos25°,得25°90
8、176;;当2=65°时,由0coscos65°,得65°90°.故当<25°时,直线l不存在;当=25°时,直线l有且仅有1条;当25°<<65°时,直线l有且仅有2条;当=65°时,直线l有且仅有3条;当65°<<90°时,直线l有且仅有4条;当=90°时,直线l有且仅有1条.说明:异面直线所成的角就是选点、平移后的平面角.上述解答首先将问题转化为:求过点O与a1、b1均成角的直线的条数,进而通过讨论的范围去确定直线l的条数.【例5】 已知空
9、间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三等分点(如下图),求证:(1)对角线AC、BD是异面直线;(2)直线EF和HG必交于一点,且交点在AC上.证明:(1)假设对角线AC、BD在同一平面内,则A、B、C、D都在平面内,这与ABCD是空间四边形矛盾,AC、BD是异面直线.(2)E、H分别是AB、AD的中点, EHBD.又F、G分别是BC、DC的三等分点,FGBD.EHFG,且EHFG.FE与GH相交.设交点为O,又O在GH上,GH在平面ADC内,O在平面ADC内.同理,O在平面ABC内.从而O在平面ADC与平面ABC的交线AC上.闯关训练1.两条相交直线l、
10、m都在平面内且都不在平面内.命题甲:l和m中至少有一条与相交,命题乙:平面与相交,则甲是乙的A.充分不必要条件 B.必要不充分条件C.充要条件D.非充分非必要条件解析:若l和m中至少有一条与相交,不妨设l=A,则由于l,A.而A,与相交.反之,若=a,如果l和m都不与相交,由于它们都不在平面内,l且m.la且ma,进而得到lm,与已知l、m是相交直线矛盾.因此l和m中至少有一条与相交.答案:C2.如下图,在棱长为2的正方体ABCDA1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点,那么异面直线OE和FD1所成的角的余弦值等于A. B. C. D.解法一:取面CC1D1D
11、的中心为H,连结FH、D1H.在FHD1中,FD1=,FH=,D1H=.由余弦定理,得D1FH的余弦值为.解法二:取BC的中点G.连结GC1FD1,再取GC的中点H,连结HE、OH,则OEH为异面直线所成的角.在OEH中,OE=,HE=,OH=.由余弦定理,可得cosOEH=.答案:B3.在三棱锥ABCD中,AD=BC=2a,E、F分别是AB、CD的中点,EF=a,求AD与BC所成的角.解:取AC的中点M,连结ME、MF,则MEBC,MFAD,所以EMF(或其补角)是直线AD与BC所成的角.在EMF中,ME=BC=a,MF=AD=a,EF=a,cosEMF=,EMF=120°,因此异
12、面直线AD与BC所成的角为60°.4.如下图,在三棱锥PABC中,AB=AC,PB=PC,E、F分别是PC和AB上的点且PEEC=AFFB=32.(1)求证:PABC;(2)设EF与PA、BC所成的角分别为、,求证:+=90°.证明:(1)取BC的中点D,连结AD、PD.则BC平面ADP,AP平面ADP,APBC.(2)在AC上取点G,使AGGC=32,连结EG、FG,则EGPA,FGBC,从而EGF为PA与BC所成的角,由(1)知EGF=90°,而GEF、GFE分别是EF与PA、EF与BC所成的角、,+=90°.平面、空间两条直线知识梳理1.平面的基本
13、性质,即三个公理及推论.2.公理4及等角定理.3.空间两条直线的位置关系有且只有三种,即平行、相交及异面.4.两条异面直线所成的角及距离,求作异面直线所成的角时,往往取题中的特殊点.点击双基1.若a,b是异面直线,则只需具备的条件是A.a平面,b平面,a与b不平行B.a平面,b平面,=l,a与b无公共点C.a直线c,bc=A,b与a不相交D.a平面,b 是的一条斜线2.如下图,直线a、b相交于点O且a、b成60°角,过点O与a、b都成60°角的直线有A.1条 B.2条 C.3条 D.4条3.如下图,正四面体SABC中,D为SC的中点,则BD与SA所成角的余弦值是A. B.
14、C. D.5.正六棱柱ABCDEFA1B1C1D1E1F1的底面边长为1,侧棱长为,则这个棱柱的侧面对角线E1D与BC1所成的角是_.典例剖析【例1】 如下图,四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DFFC=23,DHHA=23.求证:EF、GH、BD交于一点.【例2】 A是BCD平面外的一点,E、F分别是BC、AD的中点,(1)求证:直线EF与BD是异面直线;(2)若ACBD,AC=BD,求EF与BD所成的角.【例3】 长方体ABCDA1B1C1D1中,已知AB=a,BC=b,AA1=c,且a>b,求:(1)下列异面直线之间的距离:AB与CC1;A
15、B与A1C1;AB与B1C.(2)异面直线D1B与AC所成角的余弦值.【例4】 设异面直线a与b所成的角为50°,O为空间一定点,试讨论,过点O与a、b所成的角都是(0°90°)的直线l有且仅有几条?【例5】 已知空间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三等分点(如下图),求证:(1)对角线AC、BD是异面直线;(2)直线EF和HG必交于一点,且交点在AC上.闯关训练1.两条相交直线l、m都在平面内且都不在平面内.命题甲:l和m中至少有一条与相交,命题乙:平面与相交,则甲是乙的A.充分不必要条件 B.必要不充分条件C.充要条件D.非充分非必要条件2.如下图,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备拆除合同范本合集
- 果园招标合同范本
- 超市策划设计合同范本
- 规培医生合同范本
- 冷冻章鱼采购合同范本
- 橱柜销售标准合同范本
- 学校维修栏杆合同范本
- 做校园广告合同范本
- 社区安全知识培训课件信息
- 中介租房正规合同范本
- 2025年食品安全抽查考试复习题库模拟题及答案指导
- 海尔冰箱BCD-257DVC使用说明书
- 消除母婴传播培训
- 2025年高考真题-政治(河南卷) 含解析
- 农民教育培训课件
- 2025年江西省高安市吴有训实验学校英语七年级第二学期期末质量检测模拟试题含答案
- 离职人员资产管理制度
- 河北大学《国际金融管理》2023-2024学年第二学期期末试卷
- 国企性格测试题库及答案
- 全国高校(985、211)查询表模板
- 虚拟化环境的密码安全保障方案探讨
评论
0/150
提交评论