




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上25任意一个正整数m都可以表示为:mab(a,b均为正整数),在m的所有表示结果中,当|ab|最小时,规定例如,因为,所以(1) ;如果一个正整数n是另一个正整数的立方,那么称正整数n是立方数,求证:对于任意立方数n,总有;(2)一个正整数,(,是自然数),如果与其各个数位上数字之和能被19整除,那么我们称这个数为“希望数”求所有“希望数”中的最小值25阅读下列材料,并解决问题:材料1:对于一个三位数其十位数字等于个位数字与百位数字的差的两倍,则我们称这样的数为“倍差数”如122,;材料2:若一个数M能够写成Mpqpq(p、q均为正整数,且),则我们称这样的数为“不完
2、全平方差数”,当最大时,我们称此时的p、q为M的一组“最优分解数”,并规定.例如,因为:,所以;(1)求证:任意的一个“倍差数”与其百位数字之和能够被3整除;(2)若一个小于300的三位数(其中,且a、b、c均为整数)既是一个“不完全平方差数”,也是一个“倍差数”,求所有的最大值.25材料1:一个多位正整数,如果它既能被13整除,又能被14整除,那么我们称这样的数为“一生一世”数(数字1314的谐音). 例如:正整数364,则364是“一生一世”数. 材料2:若一个正整数,它既能被整除,又能被整除,且与互素(即与的公约数只有1),则一定能被整除. 例如:正整数364,因为13和14互素,则,即
3、364一定能被182整除.(1)6734 (填空:是或者不是)“一生一世”数. 并证明:任意一个位数大于三位的“一生一世”数,将其末尾三位数截去,所截的末尾三位数与截去后剩下的数之差一定能被91整除;(2)任意一个四位数的“一生一世”数,若满足前两位数字之和等于后两位数字之和,则称这样的数为“相伴一生一世”数,求出所有的“相伴一生一世”数.25对于一个正整数,如果从左到右偶数数位上的数字之和与奇数数位上的数字之和的差是11的倍数,则称这个正整数为“新奇数”。把一个多位正整数分解为末三位和末三位之前的数,如果末三位数减去末三位以前的数所得差能被13整除,则这个多位正整数“新异数”。已知任意四位数
4、P均可唯一分解为的形式(其中x,y,z均为非负整数,且),规定例如:,(1)求证:任意四位“新奇数”都能被11整除;(2)已知一个四位自然数,个位数字比百位数字小2;,且m既是“新奇数”,又是“新异数”,求符合条件的正整数m以及最小值25若整数m是8的倍数,那么称整数m为“发达数”例如,因为16是8的倍数,所以16是“发达数”(1)已知整数m等于某个奇数的平方减1,求证:m是“发达数”(2)已知两位正整数(,其中x,y为自然数),交换其个位上的数字和十位上的数字得到新数s,如果s加上t的和是“发达数”,求所有符合条件的两位正整数t25若一个三位整数(为整数,且,)满足,则称为“喜欢数”,例如满
5、足,则称102为“喜欢数”;将“喜欢数”的百位数字与十位数字交换得到的新数,则称为的“欢喜数”,例如“喜欢数”102交换其百位数字和十位数字得到的新数,则称12为102的“欢喜数”。(1)请说明任何一个“喜欢数”的“欢喜数”都能被3整除;(2)已知一个三位整数(其中为整数,且,)是“喜欢数”,是的“欢喜数”,若的两倍与的差能被13整除,求的值。25对于两个两位数和,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上的数字与个位上的数字之间和个位上的数字的右边,就可以得到两个新四位数,把这两个新四位数的和与11的商记为例如:当,时,将十位上的3放置于中1与0之间,将个位
6、上的6放置于中0的右边,得到1306,将十位上的1放置于中3与6之间,将个位上的0放置于中6的右边,得到3160,这两个新四位数的和为,所以(1)计算:;(2)若,(,都是自然数),当时,求的最大值25一个三位自然数是,将它任意两个数位的数字对调后得到一个首位不为0的新三位自然数s(s可以与s相同),设,在s所有的可能情况中,当最大时,我们称此时的s是s的“梦想数”,并规定P(s)x23y2z2例如127按上述方法可得到新数有:217、172、721,因为所以172是127的“梦想数”,此时,(1)求512的“梦想数”及的值;(2)设三位自然数,交换其个位与十位上的数字得到新数,若,且能被7整
7、除,求s的值25一个数的后三位数加上前边的数之和能被37整除,那么这个数就能够被37整除,如果前边的数超过三位,那么三个数字为一组,相加能够被37整除,这个数就能被37整除例如:6549,所以6549能被37整除;,所以能被37整除(1)判断: (能、不能)被37整除;证明:若四位数(其中,a、b、c、d为整数)能被37整除,求证:将的个位截去,再用余下的数减去个位数的11倍也能被37整除(2)一个四位数(其中,a、b、c、d为整数),其个位数字与千位数字的和等于十位数字与百位数字的和,此四位数能被37整除,且百位数字加上个位数字再与十位数字的差是一个完全平方数,求此四位数25对任意一个四位数
8、n,将这个四位数n千位上数字与十位上数字对调、百位上数字与个位上数字对调后可以得到一个新的四位数m,记例如:,对调千位上数字与十位上数字及百位上数字与个位上数字得到2314,所以.如果四位数n满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“平衡数”,例如:1423,因为,所以1423是一个平衡数.(1)请计算,并证明:对于任意一个四位数n,都有为整数;(2)若一个“平衡数”N的十位数字比百位数字的2倍少1,且这个“平衡数”能同时被3和11整除,求的最小值25一个三位正整数的各位数字均不为零,如果十位数字是个位数字与百位数字的平均数,我们把这个三位数叫作“阶梯数”。把阶梯数的
9、十位数字作个位,个位数字、百位数字分别作十位得到两个两位数,再把的十位数字作十位,个位数字、百位数字分别作个位又得到两个两位数。用减去这四个两位数,再减去的十位数字得到的差除以33,把这个商记作。例如,531是一个阶梯数,得到的四个两位数分别为53,13,35,31,差3396,3963312,则。(1)任写一个阶梯数,并求出;(2)已知都是阶梯数,其中,(都是一位正整数),如果,规定,求的最大值。25对于一个四位自然数n,如果n满足各个数位上的数字互不相同且均不为0,它的千位数字与个位数字之和等于百位数字与十位数字之和,那么称这个数n为“平衡数”,对于一个“平衡数”,从千位数字开始顺次取出三
10、个数字构成四个三位数,把这四个三位数的和与222的商记为,例如:,因为1625,所以1526是一个“平衡数”,从千位数字开始顺次取出三个数字构成的四个三位数分别为152、526、261、615,这四个三位数的和为:1525262616151554,11542227,所以(1)写出最小和最大的“平衡数”n,并求出对应的值;(2)若s、t都是“平衡数”,其中s10xy3201,t1000m10n126(,x、y、m、n都是整数),规定:,当是一个完全平方数时,求k的最大值。25对于一个各个数位上的数字均不为零的三位正整数,如果它的百位数字、十位数字、个位数字是由依次增加相同的非零数字组成,则称这个
11、三位数为“递增数”,记为,把这个“递增数”的百位数字与个位数字交换位置后,可得另一个三位数,记为。如123,记为,交换123的百位数字与个位数字的位置后,得到321,即。规定,如。(1)计算:,;(2)若是百位数字为1的数,是个位数字为9的数,且满足,记,求的最大值。25阅读下列材料:材料1:若五位整数去掉个位数字后剩下的数再加上去掉的个位数字的4倍,其结果能被13整除,则这个数能被13整除。若数字太大不能直接观察出来,就重复此过程。例如:14443去掉个位数字后得到1444,加上3的4倍得到1456,1456去掉个位数字6得到145,再加上6的4倍得到169,169能被13整除,故14443
12、能被13整除。材料2:任意一个大于3的正整数M都有如下分解: Mabc (a,b,c为正整数,且ab,abc).当的值最小时,定义. 例如:, 当时,的值最小,所以(1)请判断:32799_(能/不能)被13整除;请证明:任意四位整数去掉个位数字后剩下的数再加上去掉的个位数字的4倍,其结果能被13整除,这个数也能被13整除。(2)若整数(1m9,1n9,且m,n为整数),。若一个整数从左到右的数位上的数字和另一个整数从右到左的数位上的数字完全相同,则称这两个整数互为对称数。将A作为数P的后两位数,作为数P后两位以前的数。若P的对称数能被39整除,求的值.25一个形如的五位自然数(其中c表示该数万位和个位上的数字,b表示千位和十位上的数字,a表示百位上的数字
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 住院部个人工作计划
- 河北保定曲阳县2025年七下数学期末统考试题含解析
- 高峰期仓库工作计划
- 2024年河南省医疗保障局下属事业单位真题
- 2024年南安市实验中学招聘笔试真题
- 社交媒体经理工作总结与传播策略计划
- 内蒙古乌海二十二中学2025届数学七下期末检测模拟试题含解析
- 2025年网络管理员考试自己测试试题
- 材料力学性能测试疲劳寿命环境因素重点基础知识点
- 广东省珠海市斗门区2025年七年级数学第二学期期末综合测试试题含解析
- 临时演员聘用合同
- 航空客运包机合同
- 马拉松志愿者培训
- 车间卫生打扫管理制度
- 高中教师培训管理制度
- 造价风险防范管理制度
- 饲料粉尘清扫管理制度
- 《浙江省中药饮片炮制规范》 2015年版
- 某楼板裂缝修复及碳纤维加固施工方案
- 青马选拔考试试题及答案
- 中国金融大模型发展白皮书
评论
0/150
提交评论