




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Derivation of 3D Euler and Navier-Stokes Equationsin Cylindrical CoordinatesContents1. Derivation of 3D Euler Equation in Cylindrical coordinates2. Derivation of Euler Equation in Cylindrical coordinates moving at in tangential direction3. Derivation of 3D Navier-Stokes Equation in Cylindrical Coord
2、inates1. Derivation of 3D Euler Equation in Cylindrical coordinatesEuler Equation in Cartesian coordinates (1.1)Where à Conservative flow variablesà Inviscid/convective flux in x directionà Inviscid/convective flux in y directionà inviscid/convective flux in z directionAnd their
3、specific definitions are as follows,à Total enthalpySome relationshipWe want to perform the following coordinates transformationBecauseAccording to Cramers ruler, we have (1.2.1) (1.2.2)WhereSimilar to the above (1.2.3) (1.2.4)In addition, the following relations hold between cylindrical coordi
4、nate and Cartesian coordinate, (1.3) (1.4.1) (1.4.2)DerivationMultiplying the both side of equation (1.1) by and applying equalities (1.4.1) and (1.4.2) gives, (1.5)Differentiating the following w.r.t. time gives, (1.6.1) (1.6.2)Expanding the term and applying the relationships (1.6) yields, (1.7.1)
5、Expanding the term and applying the relationships (1.6) yields, (1.7.2)Substituting relationships (1.7) into equation (1.5) and rearranging gives,(1.8)As we can see from expressions (1.7), the momentum equations in radial and tangential directions contain velocities in Cartesian coordinate; we need
6、to replace them with corresponding variables in cylindrical coordinate. Writing down the momentum equations in radial and tangential directions as follows, () ()Multiplying () by and () by, then summing up and applying expressions (1.6) and rearranging yields (1.10.1)Multiplying (a) by and (b) by, t
7、hen summing up and applying expressions (1.6) yields, ()Replacing (1.10) with (1.9) and rearranging equation (1.8) gives (1.11)Where,Note: different from Euler equation in Cartesian coordinates, the Euler equation in cylindrical coordinates contains source terms from momentum equations in radial and
8、 tangential equations.2. Derivation of Euler Equation in Cylindrical coordinates moving at in tangential directionWhere, , ,Then equation (1.11) can be written as follows (2.1)Where Equation (2.1) adopts rotating coordinates but the variables are measured in absolute cylindrical coordinates.3. Deriv
9、ation of 3D Navier-Stokes Equation in Cylindrical Coordinates3D Navier-Stokes Equations in Cartesian coordinates (3.1)Where,,,In the following derivation, only viscous terms will be derived from Cartesian coordinates to cylindrical coordinates, those inviscid terms having been derived in section 1 w
10、ill be not repeated. Replacing with gives (3.2.1)Replacing with gives (3.2.2)Multiplying equation (3.1) by , the viscous terms are gives as follows (omitting the negative sign before it from simplicity),(3.3) (3.4.1), (3.4.2), (3.4.3),(3.4.4) (3.4.5) (3.4.6)Expanding expression (3.3) gives,(3.5)= (3
11、.6.1)= (3.6.2)(3.6.3)(3.7.1)Divergence in Cartesian Coordinates (3.7.2)Divergence in cylindrical coordinates (3.7.3)(3.8.1)(3.8.2)(3.9.1)(3.9.2)As we can see from the above that viscous terms in expression (3.5) for the momentum equation in axial/x direction and energy equation can be expressed in v
12、ariables in cylindrical coordinates, while the viscous terms in (3.5) for momentum equations in radial and tangential directions still contain variables in Cartesian coordinates. Similar manipulation to (1.10) will be adopted in the following.Writing out the viscous terms for momentum equations in r
13、adial and tangential coordinates as follows, (3.10.1) (3.10.2)Multiplying (3.10.1) by and multiplying (3.10.2) by , then summing up and rearranging gives,(3.11.1)Multiplying (3.10.1) by and multiplying (3.10.2) by , then summing up and rearranging gives,(3.11.2)(3.12.1)(3.12.2)(3.12.3) (3.12.4)Subst
14、ituting (3.6.1), (3.6.2) and (3.12) into expressions (3.11) and rearranging yields, (3.13.1) (3.13.2) Making use of expressions (3.4.1), (3.6.1), (3.6.2), (3.8.1), (3.8.2), (3.9.1), (3.9.2),(3.13.1) and (3.13.2), we can get the final expression of 3D Navier-Stokes Equation in cylindrical coordinates as follows,3D Navier-Stokes Equation in cylindrical coordinates,,,,, If the moment of momentum equation is adopted to replace the tangential momentum equation, its expression will be s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业互联网平台网络流量整形技术在工业大数据处理中的应用分析报告
- 宁波工程学院《剑桥商务英语中级双语》2023-2024学年第二学期期末试卷
- 探讨2025年创业扶持政策的变化试题及答案
- 数学逻辑的挑战性试题及答案
- 山东外事职业大学《计算机应用实践》2023-2024学年第二学期期末试卷
- 茂名职业技术学院《建筑装饰材料与工程概预算》2023-2024学年第二学期期末试卷
- 太原幼儿师范高等专科学校《数学管理类》2023-2024学年第二学期期末试卷
- 天津农学院《艺术基础》2023-2024学年第二学期期末试卷
- 山东电力高等专科学校《汽车电器与电子技术B》2023-2024学年第二学期期末试卷
- 金融科技企业估值方法创新与风险管理体系构建报告
- 2025统编版语文六年级下册第二单元解析+任务目标+大单元教学设计
- 灾后救援与重建
- 上海第二工业大学《高等数学B(上)》2023-2024学年第二学期期末试卷
- 2025届上海市(春秋考)高考英语考纲词汇对照表清单
- 2025年黑龙江齐齐哈尔市网络舆情中心招聘5人历年高频重点提升(共500题)附带答案详解
- 区域代理方案(3篇)
- 八年级期中英语试卷分析及整改措施
- 养老院艺术疗愈活动方案
- 《地理高考备考讲座》课件
- 2024-2030年全球及中国雅思练习和考试平台行业发展规模及未来前景预测报告
- TSG 07-2019电梯安装修理维护质量保证手册程序文件制度文件表单一整套
评论
0/150
提交评论