




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、极限思想外文翻译pdfBSHMBulletin,2014DidWeierstrasssdifferentialcalculushavealimit-avoidingcharacter?His,definitionofalimitinstyleMICHIYONAKANENihonUniversityResearchInstituteofScience&Technology,JapanInthe1820s,Cauchyfoundedhiscalculusonhisoriginallimitconceptand,developedhisthe-orybyusinginequalities,b
2、uthedidnotapplytheseinequalitiesconsistentlytoallpartsofhistheory.Incontrast,Weierstrassconsistentlydevelopedhis1861lecturesondifferentialcalculusintermsofepsilonics.HislectureswerenotbasedonCauchyslimitandaredistin-guishedbytheirlimit-avoidingcharacter.Dugacspartialpublicationofthe1861lecturesmakes
3、thesedifferencesclear.Butintheunpublishedportionsofthelectures,Weierstrassactu-allydefinedhislimitintermsofinequalities.Weierstrassslimitwasaprototypeofthemodernlimitbutdidnotserveasafoundationofhiscalculustheory.Forthisreason,hedidnotprovidethebasicstructureforthemodernedstyleanalysis.ThusitwasDini
4、s1878text-bookthatintroducedthe,definitionofalimitintermsofinequalities.IntroductionAugustinLouisCauchyandKarlWeierstrassweretwoofthemostimportantmathematiciansassociatedwiththeformalizationofanalysisonthebasisoftheeddoctrine.Inthe1820s,Cauchywasthefirsttogivecomprehensivestatementsofmathematicalana
5、lysisthatwerebasedfromtheoutsetonareasonablycleardefinitionofthelimitconcept(Edwards1979,310).Heintroducedvariousdefinitionsandtheoriesthatinvolvedhislimitconcept.Hisexpressionsweremainlyverbal,buttheycouldbeunderstoodintermsofinequalities:givenane,findnord(Grabiner1981,7).Asweshowlater,Cauchyactual
6、lyparaphrasedhislimitconceptintermsofe,d,andn0inequalities,inhismorecomplicatedproofs.ButitwasWeierstrasss1861lectureswhichusedthetechniqueinallproofsandalsoinhisdefi-nition(Lutzen?2003,185-186).Weierstrasssadoptionoffullepsilonicarguments,however,didnotmeanthatheattainedaprototypeofthemoderntheory.
7、Modernanalysistheoryisfoundedonlimitsdefinedintermsofedinequalities.HislectureswerenotfoundedonCauchyslimitorhisownoriginaldefinitionoflimit(Dugac1973).Therefore,inordertoclarifytheformationofthemoderntheory,itwillbenecessarytoidentifywheretheeddefinitionoflimitwasintroducedandusedasafoundation.Wedo
8、notfindthewordlimitinthepublishedpartofthe1861lectures.Accord-ingly,Grattan-Guinness(1986,228)characterizesWeierstrasssanalysisaslimit-avoid-ing.However,Weierstrassactuallydefinedhislimitintermsofepsilonicsintheunpublishedportionofhislectures.Histheoryinvolvedhislimitconcept,althoughtheconceptdidnot
9、functionasthefoundationofhistheory.Basedonthisdiscovery,thispaperreexaminestheformationofedcalculustheory,notingmathematicianstreat-mentsoftheirlimits.Werestrictourattentiontotheprocessofdefiningcontinuityandderivatives.Nonetheless,thisfocusprovidessufficientinformationforourpurposes.First,weconfirm
10、thatepsilonicsargumentscannotrepresentCauchyslimit,thoughtheycandescriberelationshipsthatinvolvedhislimitconcept.Next,weexaminehowWeierstrassconstructedanovelanalysistheorywhichwasnotbased2013BritishSocietyfortheHistoryofMathematicss resu lts. Then52BSHMBulletinonCauchyslimitsbutcouldhaveinvolvedCau
11、chyWeierstrasssdefinitionoflimit.Finally,wenotethatDiniorganizedhisanalysistextbookin1878basedonanalysisperformedintheedstyle.CauchyslimitandepsilonicargumentsCauchysseriesoftextbooksoncalculus,Coursdanalyse(1821),Resumedeslecons?donneesalEcoleroyalepolytechniquesurlecalculinfinitesimaltomepremier(1
12、823),andLecons?surlecalculdifferentiel(1829),areoftenconsideredasthemainreferen-cesformodernanalysistheory,therigourofwhichisrootedmoreinthenineteenththanthetwentiethcentury.AtthebeginningofhisCoursdanalyse,Cauchydefinedthelimitconceptasfollows:Whenthesuccessivelyattributedvaluesofthesamevariableind
13、efinitelyapproachafixedvalue,sothatfinallytheydifferfromitbyaslittleasdesired,thelastiscalledthelimitofalltheothers(1821,19;EnglishtranslationfromGrabiner1981,80).Startingfromthisconcept,Cauchydevelopedatheoryofcontinuousfunc-tions,infiniteseries,derivatives,andintegrals,constructingananalysisbasedo
14、nlim-its(Grabiner1981,77).Whendiscussingtheevolutionofthelimitconcept,Grabinerwrites:This con -cept,translatedintothealgebraofinequalities,wasexactlywhatCauchyneededforhiscalculus(1981,80).Fromthepresent-daypointofview,Cauchydescribedratherthandefinedhiskineticconceptoflimits.Accordingtohisdefinitio
15、nwhichhasthequalityofatranslationordescriptionhecoulddevelopanyaspectofthetheorybyreducingittothealgebraofinequalities.Next,Cauchyintroducedinfinitelysmallquantitiesintohistheory.Whenthesuc-cessiveabsolutevaluesofavariabledecreaseindefinitely,insuchawayastobecomelessthananygivenquantity,thatvariable
16、becomeswhatiscalledaninfinitesimal.Suchavariablehaszeroforitslimit(1821,19;EnglishtranslationfromBirkhoffandMerzbach1973,2).Thatistosay,inCauchysframeworkthelimitofvariablexiscisintuitivelyunderstoodasxindefinitelyapproachesc,andisrepresentedasjxcjisaslittleasdesiredorjxcjisinfinitesimal.Cauchysidea
17、ofdefininginfinitesimalsasvariablesofaspecialkindwasoriginal,becauseLeibnizandEuler,forexample,hadtreatedthemasconstants(Boyer1989,575;Lutzen?2003,164).InCoursdanalyseCauchyatfirstgaveaverbaldefinitionofacontinuousfunc-tion.Then,herewroteitintermsofinfinitesimals:Inotherwords,thefunctionfexTwillrema
18、incontinuousrelativetoxinagivenintervalif(inthisinterval)aninfinitesimalincrementinthevariablealwayspro-ducesaninfinitesimalincrementinthefunctionitself.(1821,43;Englishtransla-tionfromBirkhoffandMerzbach1973,2).Heintroducedtheinfinitesimal-involvingdefinitionandadoptedamodifiedversionofitinResume(1
19、823,1920)andLecons?(1829,278).FollowingCauchysdefinitionofinfinitesimals,acontinuousfunctioncanbedefinedasafunctionfexTinwhichthevariablefextaTfexTisaninfinitelysmallquantity(aspreviouslydefined)wheneverthevariableais,thatis,thatfextaTfexTapproachestozeroasadoes,asnotedbyEdwards(1979,311).Thus,thede
20、finitioncanbetranslatedintothelanguageofedinequalitiesfromamodernviewpoint.Cauchysinfinitesimalsarevariables,andwecanalsotakesuchaninterpretation.Volume29(2014)53Cauchyhimselftranslatedhislimitconceptintermsofedinequalities.HechangedIfthedifferencefext1TfexTconvergestowardsacertainlimitk,forincreasi
21、ngvaluesofx,(.)toFirstsupposethatthequantitykhasafinitevalue,anddenotebyeanumberassmallaswewishwecangivethenumberhavaluelargeenoughthat,whenxisequaltoorgreaterthanh,thedifferenceinquestionisalwayscontainedbetweenthelimitske;kte(1821,54;EnglishtranslationfromBradleyandSandifer2009,35).InResume,Cauchy
22、gaveadefinitionofaderivative:iffexTiscontinuous,thenitsderivativeisthelimitofthedifferencequotient,yf(x,i),f(x),xiasitendsto0'(1823,22-23).Healsotranslatedtheconceptofderivativeasfollows:Designatebydandetwoverysmallnumbers;thefirstbeingchoseninsuchawaythat,fornumericalvaluesofilessthand,.,therat
23、iofextiTfexT=ialwaysremainsgreaterthanfexTeandlessthanfexTte(1823,44-45;Englishtransla-tionfromGrabiner1981,115).TheseexamplesshowthatCauchynotedthatrelationshipsinvolvinglimitsorinfinitesimalscouldberewrittenintermofinequalities.CauchysargumentsaboutinfiniteseriesinCoursdanalyse,whichdealtwiththere
24、lationshipbetweenincreasingnumbersandinfinitesimals,hadsuchacharacter.Laugwitz(1987,264;1999,58)andLutzen?(2003,167)havenotedCauchysstrictuseoftheeNcharacterizationofconvergenceinseveralofhisproofs.BorovickandKatz(2012)indicatethatthereisroomtoquestionwhetherornotourrepresentationusingedinequalities
25、conveysmessagesdifferentfromCauchysoriginalintention.Butthispaperacceptstheinter-pretationsofEdwards,Laugwitz,andLutzen?.Cauchyslecturesmainlydiscussedpropertiesofseriesandfunctionsinthelimitprocess,whichwererepresentedasrelationshipsbetweenhislimitsorhisinfinitesi-mals,orbetweenincreasingnumbersand
26、infinitesimals.Hiscontemporariespresum-ablyrecognizedthepossibilityofdevelopinganalysistheoryintermsofonlye,d,andn0inequalities.Withafewnotableexceptions,allofCauchyslecturescouldberewrit-tenintermsofedinequalities.Cauchylimitsandhisinfinitesimalswerenotfunc-tionalrelationships,1sotheywerenotreprese
27、ntableintermsofedinequalities.Cauchyslimitconceptwasthefoundationofhistheory.Thus,WeierstrasssfullepsilonicanalysistheoryhasadifferentfoundationfromthatofCauchy.Weierstrasss1861lecturesWeierstrasssconsistentuseofedargumentsWeierstrassdeliveredhislecturesOnthedifferentialcalculusattheGewerbeInsti-tut
28、Berlin2inthesummersemesterof1861.NotesoftheselecturesweretakenbylEdwards(1979,310),Laugwitz(1987,260-261,271-272),andFisher(1978,16-318)pointoutthatCauchy'sinfinitesimalsequatetoadependentvariablefunctionoraehTthatapproacheszeroash!0.Cauchyadoptedthelatterinfinitesimals,whichcanbewrittenintermso
29、fedarguments,whenheintro-ducedaconceptofdegreeofinfinitesimals(1823,250;1829,325).EveryinfinitesimalofCauchysisavari-ableinthepartsthatthepresentpaperdiscusses.2AforerunneroftheTechnischeUniversit?atBerlin.54BSHMBulletinHermanAmandusSchwarz,andsomeofthemhavebeenpublishedintheoriginalGermanbyDugac(19
30、73).Notingthenewaspectsrelatedtofoundationalconceptsinanalysis,fulleddefinitionsoflimitandcontinuousfunction,anewdefinitionofderivative,andamoderndefinitionofinfinitesimals,Dugacconsideredthatthenov-eltyofWeierstrass'slectureswasincontestable(1978,372,1976,6-7).3Afterbeginninghislecturesbydefini
31、ngavariablemagnitude,Weierstrassgavethedefinitionofafunctionusingthenotionofcorrespondence.Thisbroughthimtothefollowingimportantdefinition,whichdidnotdirectlyappearinCauchystheory:(D1)Ifitisnowpossibletodetermineforhabounddsuchthatforallvaluesofhwhichintheirabsolutevaluearesmallerthand,fexthTfexTbec
32、omessmallerthananymagnitudee,howeversmall,thenonesaysthatinfinitelysmallchangesoftheargumentcorrespondtoinfinitelysmallchangesofthefunction.(Dugac1973,119;EnglishtranslationfromCalinger1995,607)Thatis,Weierstrassdefinednotinfinitelysmallchangesofvariablesbutinfinitelysmallchangesoftheargumentscorres
33、pond(ing)toinfinitelysmallchangesoffunctionthatwerepresentedintermsofedinequalities.Hefoundedhistheoryonthiscorrespondence.Usingthisconcept,hedefinedacontinuousfunctionasfollows:(D2)Ifnowafunctionissuchthattoinfinitelysmallchangesoftheargumenttherecorrespondinfinitelysmallchangesofthefunction,onethe
34、nsaysthatitisacontinuousfunctionoftheargument,orthatitchangescontinuouslywiththisargument.(Dugac1973,119-120;EnglishtranslationfromCalinger1995,607)Soweseethatinaccordancewithhisdefinitionofcorrespondence,Weierstrassactuallydefinedacontinuousfunctiononanintervalintermsofepsilonics.Since(D2)isderived
35、bymerelychangingCauchystermproduceto,itseemsthatWeierstrasstooktheideaofthisdefinitionfromcorrespondCauchy.However,Weierstrasssdefinitionwasgivenintermsofepsilonics,whileCauchysdefinitioncanonlybeinterpretedintheseterms.Furthermore,WeierstrassachieveditwithoutCauchyslimit.Luzten?(2003,186)indicatest
36、hatWeierstrassstillusedtheconceptofinfinitelysmallinhislectures.Untilgivinghisdefinitionofderivative,Weierstrassactuallyafunctioncontinuedtousetheterminfinitesimallysmallandoftenwroteofwhichbecomesinfinitelysmallwithh.Butseveralinstancesofinfinitesimallysmallappearedinformsoftherelationshipsinvolvin
37、gthem.Definition(D1)givestherela-tionshipintermsofedinequalities.WemaythereforeassumethatWeierstrassslecturesconsistentlyusededinequalities,eventhoughhisdefinitionswerenotdirectlywrittenintermsoftheseinequalities.Weierstrassinsertedsentencesconfirmingthattherelationshipsinvolvingtheterminfinitelysma
38、llweredefinedintermsofedinequalitiesasfollows:ehTisan(D3)Ifhdenotesamagnitudewhichcanassumeinfinitelysmallvalues,arbitraryfunctionofhwiththepropertythatforaninfinitelysmallvalueofhit3ThepresentpaperalsoquotesKurtBingstranslationincludedinCalingersClassicsofmathematics.Volume29(2014)55alsobecomesinfi
39、nitelysmall(thatis,thatalways,assoonasadefinitearbitrarysmallmagnitudeeischosen,amagnitudedcanbedeterminedsuchthatforallvaluesofhwhoseabsolutevalueissmallerthand,ehTbecomessmallerthane).(Dugac1973,120;EnglishtranslationfromCalinger,1995,607)AsDugac(1973,65)indicates,somemoderntextbooksdescribeehTasi
40、nfinitelysmallorinfinitesimal.WeierstrassarguedthatthewholechangeoffunctioncaningeneralbedecomposedasDfexT?fexthTfexT?p:hthehT;e1TwherethefactorpisindependentofhandehTisamagnitudethatbecomesinfinitelysmallwithh.4However,heoverlookedthatsuchdecompositionisnotpossibleforallfunctionsandinsertedthetermi
41、ngeneral.Herewrotehasdx.OnecanmakethedifferencebetweenDfexTandp:dxsmallerthananymagnitudewithdecreasingdx.HenceWeierstrassdefineddifferentialas the changewhichafunctionundergoeswhenitsargumentchangesbyaninfinitesimallysmallmagnitudeanddenoteditasdfexT.Then,dfexT?p:dx.Weierstrasspointedoutthatthediff
42、erentialcoefficientpisafunctionofxderivedfromfexTandcalleditaderivative(Dugac1973,120-121;EnglishtranslationfromCalinger1995,607-608).InaccordancewithWeierstrasssdefinitions(D1)and(D3),helargelydefinedaderivativeintermsofepsilonics.Weierstrassdidnotadopttheterminfinitelysmallbutdirectlyusededinequalitieswhenhediscussedpropertiesofinfiniteseriesinvolvinguniformconver-gence(Dugac1973,122124).Itmaybeinfe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业管理服务协议细则
- 公文写作的重要性与2025年试题及答案
- 通信行业智能化通信设备维护与升级方案
- 车位租赁共享协议
- 行政管理学考试思维导图及试题及答案
- 自考行政管理知识总结试题及答案
- 行政管理学知识更新试题及答案
- 现代管理学思维模式的试题及答案
- 2025企业长期借款合同模板
- 2025年挖掘机租赁合同
- RULES OF ORIGIN 原产地规则
- 国内旅游出团通知书(新版)
- LETTEROFINTENTION意向书范本
- 国内各航空公司差异化服务
- 《山东省自然科学基金资助项目年度进展报告》
- 发展与教育心理学个别差异
- 2022年重庆市建筑安全员A证考试近年真题汇总(含答案解析)
- 沸腾炉的设计
- 太仓德资企业
- 电网有限公司电网建设项目档案管理办法
- 简易离职申请
评论
0/150
提交评论