KMP算法演算过程(讲述内容)_第1页
KMP算法演算过程(讲述内容)_第2页
KMP算法演算过程(讲述内容)_第3页
KMP算法演算过程(讲述内容)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、KMP中next数组以及nextval数组的求法。明确传统模式匹配算法的不足,明确next数组需要改进之外。其中,理解算法是核心,会求数组是得分点。不用我多说,这一节内容是本章的重中之重。可能进行的考查方式是:求next和nextval数组值,根据求得的。KMP算法即Knuth-Morris-Pratt算法,是模式匹配的一种改进算法,因为是名字中三人同时发现的,所以称为KMP算法。因为偶然接触到有关KMP的问题,所以上网查了一下next数组和nextval数组的求法,却没有找到,只有在CSDN的资料文件里找到了next数组的简单求法(根据书上提供的程序也可以求到,但一般在课堂讲解的时候,学生难

2、以理解,所以希望以更容易理解的形式来讲解),那位高人说时间关系,先讲到这里,于是讲完了next数组就功成身退了。BS的同时,自己研究了下nextwal数组,发现了其中的简易规律,并写了出来,希望能对需要快速理解KMP中nextval的求法的朋友有所帮助。    int get_nextval(SString T,int &nextval )        /求模式串T的next函数修正值并存入数组nextval。      &#

3、160; i=1; nextval1=0; j=0;        while(i<T0)            if(j=0|Ti=Tj)                +i;+j;      

4、0;         if (Ti!=Tj) nextvali=j;                else nextvali=nextvalj;                   

5、60;    else j=nextvalj;             /get_nextval     根据这段程序来求nextval的值是可以方便计算出来,但如果是应付考研试题或者期末考试就有点麻烦了。而如果记住我推荐的方法,那么任何时候都可以很方便地求解nextval了。    首先看看next数组值的求解方法。    例如: 模式串abaabcac&

6、#160;  next值01122312   nextval值    next数组的求解方法是:第一位的next值为0,第二位的next值为1,后面求解每一位的next值时,根据前一位进行比较。首先将前一位与其next值对应的内容进行比较,如果相等,则该位的next值就是前一位的next值加上1;如果不等,向前继续寻找next值对应的内容来与前一位进行比较,直到找到某个位上内容的next值对应的内容与前一位相等为止,则这个位对应的值加上1即为需求的next值;如果找到第一位都没有找到与前一位相等的内容,那么需求的位上的next值即为1

7、。     看起来很令人费解,利用上面的例子具体运算一遍。     1.前两位必定为0和1。    2.计算第三位的时候,看第二位b的next值,为1,则把b和1对应的a进行比较,不同,则第三位a的next的值为1,因为一直比到最前一位,都没有发生比较相同的现象。    3.计算第四位的时候,看第三位a的next值,为1,则把a和1对应的a进行比较,相同,则第四位a的next的值为第三位a的next值加上1。为2。因为是在第三位实现了其next值对应的值与

8、第三位的值相同。    4.计算第五位的时候,看第四位a的next值,为2,则把a和2对应的b进行比较,不同,则再将b对应的next值1对应的a与第四位的a进行比较,相同,则第五位的next值为第二位b的next值加上1,为2。因为是在第二位实现了其next值对应的值与第四位的值相同。    5.计算第六位的时候,看第五位b的next值,为2,则把b和2对应的b进行比较,相同,则第六位c的next值为第五位b的next值加上1,为3,因为是在第五位实现了其next值对应的值与第五位相同。    6.计算第

9、七位的时候,看第六位c的next值,为3,则把c和3对应的a进行比较,不同,则再把第3位a的next值1对应的a与第六位c比较,仍然不同,则第七位的next值为1。    7.计算第八位的时候,看第七位a的next值,为1,则把a和1对应的a进行比较,相同,则第八位c的next值为第七位a的next值加上1,为2,因为是在第七位和实现了其next值对应的值与第七位相同。    在计算nextval之前要先弄明白,nextval是为了弥补next函数在某些情况下的缺陷而产生的,例如主串为“aaabaaaab”、模式串为“aaaab”那么

10、,比较的时候就会发生一些浪费的情况:比较到主串以及模式串的第四位时,发现其值并不相等,据我们观察,我们可以直接从主串的第五位开始与模式串进行比较,而事实上,却进行了几次多余的比较。使用nextval可以去除那些不必要的比较次数。    求nextval数组值有两种方法,一种是不依赖next数组值直接用观察法求得,一种方法是根据next数组值进行推理,两种方法均可使用,视更喜欢哪种方法而定。    我们使用例子“aaaab”来考查第一种方法。    1.试想,在进行模式匹配的过程中,将模式串“aaaab”与

11、主串进行匹配的时候,如果第一位就没有吻合,即第一位就不是a,那么不用比较了,赶快挪到主串的下一位继续与模式串的第一位进行比较吧,这时,模式串并没有发生偏移,那么,模式串第一位a的nextval值为0。    2.如果在匹配过程中,到第二位才发生不匹配现象,那么主串的第一位必定是a,而第二位必定不为a,既然知道第二位一定不为a,那么主串的第一、二两位就没有再进行比较的必要,直接跳到第三位来与模式串的第一位进行比较吧,同样,模式串也没有发生偏移,第二位的nextval值仍然为0。    3.第三位、第四位类似2的过程,均为0。 

12、   4.如果在匹配过程中,直到第五位才发生不匹配现象,那么主串的第一位到第四位必定为a,并且第五位必定不为b,可是第五位仍然有可能等于a。如果万一第五位为a,那么既然前面四位均为a,所以,只要第六位为b,第一个字符串就匹配成功了。所以,现在的情况下,就是看第五位究竟是不是a了。所以发生了下面的比较: 123456aaaa*aaaabaaaab前面的三个a都不需要进行比较,只要确定主串中不等于b的那个位是否为a,即可以进行如下的比较:如果为a,则继续比较主串后面一位是否为b;如果不为a,则此次比较结束,继续将模式串的第一位去与主串的下一位进行比较。由此看来,在模式串的第五位

13、上,进行的比较偏移了4位(不进行偏移,直接比较下一位为0),故第五位b的nextval值为4。     我们可以利用第一个例子“abaabcac”对这种方法进行验证。    a的nextval值为0,因为如果主串的第一位不是a,那么没有再比较下去的必要,直接比较主串的第二位是否为a。如果比较到主串的第二位才发生错误,则主串第一位肯定为a,第二位肯定不为b,此时不能直接跳到第三位进行比较,因为第二位还可能是a,所以对主串的第二位再进行一次比较,偏移了1位,故模式串第二位的nextval值为1。以此类推,nextval值分别为:

14、01021302。其中第六位的nextval之所以为3,是因为,如果主串比较到第六位才发生不匹配现象,那么主串的前五位必定为“abaab”且第六位必定不是“c”,但第六位如果为“a”的话,那么我们就可以从模式串的第四位继续比较下去。所以,这次比较为: 1234 5678910 11 12abaab*abaabcac    而不是: 1234 5678910 11 12abaab*abaabca    因为前两位a和b已经确定了,所以不需要再进行比较了。所以模式串第六位的nextval值为这次比较的偏移量3。  &#

15、160; 再来看求nextval数组值的第二种方法。模式串abaabcacnext值01122312nextval值010213021.第一位的nextval值必定为0,第二位如果于第一位相同则为0,如果不同则为1。    2.第三位的next值为1,那么将第三位和第一位进行比较,均为a,相同,则,第三位的nextval值为0。    3.第四位的next值为2,那么将第四位和第二位进行比较,不同,则第四位的nextval值为其next值,为2。    4.第五位的next值为2,那么将第五位和第二位进行比较,相同,第二位的next值为1,则继续将第二位与第一位进行比较,不同,则第五位的nextval值为第二位的next值,为1。    5.第六位的next值为3,那么将第六位和第三位进行比较,不同,则第六位的nextval值为其next值,为3。    6.第七位的next值为1,那么将第七位和第一位进行比较,相同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论