




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 它是它是13001300多年前我国隋代建造的石拱桥多年前我国隋代建造的石拱桥, , 是我国古代人是我国古代人民勤劳与智慧的结晶它的主桥是圆弧形民勤劳与智慧的结晶它的主桥是圆弧形, ,它的跨度它的跨度( (弧所对弧所对的弦的长的弦的长) )为为37.4m, 37.4m, 拱高拱高( (弧的中点到弦的距离弧的中点到弦的距离) )为为7.2m7.2m, 你能求出赵州桥主桥拱的半径吗?你能求出赵州桥主桥拱的半径吗?你知道赵州桥吗你知道赵州桥吗? ? 实践探究实践探究把一个圆沿着它的任意一条直径对折,把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到重复几次,你发现了什么?由此你能
2、得到什么结论?什么结论?可以发现:可以发现:圆是圆是轴对称轴对称图形,任何一条图形,任何一条直径直径所所在直线都是它的对称轴,它有无数条对称轴在直线都是它的对称轴,它有无数条对称轴看一看看一看B.OCAEDO.CAEBDAEBEAEBEAM=BM,AB是是 O的一条弦的一条弦. 你能发现图中有哪些等量关系你能发现图中有哪些等量关系?与同伴说与同伴说说你的想法和理由说你的想法和理由.作作直径直径CD,使使CDAB,垂足为垂足为M.O右图是轴对称图形吗右图是轴对称图形吗?如果是如果是,其对称轴是什么其对称轴是什么?小明发现图中有小明发现图中有:ABCDM由由 CD是直径是直径 CDAB可推得可推得
3、 AC=BC,AD=BD.垂径定理垂径定理如图如图,小明的理由是小明的理由是:连接连接OA,OB,OA,OB,OABCDM则则OA=OB.在在RtOAM和和RtOBM中中,OA=OB,OM=OM,RtOAM RtOBM.AM=BM.点点A和点和点B关于关于CD对称对称. O关于直径关于直径CD对称对称,当圆沿着直径当圆沿着直径CD对折时对折时,点点A与点与点B重合重合,AC和和BC重合重合,AD和和BD重合重合. AC =BC,AD =BD.垂径定理垂径定理三种语言三种语言定理定理 垂直垂直于弦的直径于弦的直径平分平分弦弦,并且平分并且平分 111弦所对的两条弦所对的两条弧弧.OABCDMCD
4、AB,如图如图 CD是直径是直径,AM=BM, AC =BC, AD=BD.CDAB,AB是是 O的一条弦的一条弦,且且AM=BM.你能发现图中有哪些等量关系你能发现图中有哪些等量关系?与同伴说说你的与同伴说说你的想法和理由想法和理由.过点过点M作直径作直径CD.O右图是轴对称图形吗右图是轴对称图形吗?如果是如果是,其对称轴是什么其对称轴是什么?小明发现图中有小明发现图中有:CD由由 CD是直径是直径 AM=BM可推得可推得AC=BC,AD=BD. MAB如图如图,小明的理由是小明的理由是:连接连接OA,OB,OA,OB,垂径定理的垂径定理的逆定理逆定理OABCDM则则OA=OB.在在OAM和
5、和OBM中中,OA=OB,OM=OM,AM=BMOAM OBM.AMO= BMO.CDAB O关于直径关于直径CD对称对称,当圆沿着直径当圆沿着直径CD对折时对折时,点点A与点与点B重合重合,AC和和BC重合重合,AD和和BD重合重合. AC =BC,AD =BD.平分平分弦(不是直径)的直径弦(不是直径)的直径垂直垂直于于弦弦, ,并且并且平分平分弦所对的两条弦所对的两条弧弧. .例例1 1 :如图,已知在:如图,已知在O O中,弦中,弦ABAB的长为的长为8 8厘米,圆心厘米,圆心O O到到ABAB的距离的距离为为3 3厘米,求厘米,求O O的半径。的半径。解:连结解:连结OA。过。过O作
6、作OEAB,垂足为,垂足为E, 则则OE3厘米,厘米,AEBE。 AB8厘米厘米 AE4厘米厘米 在在RtAOE中,根据勾股定理有中,根据勾股定理有OA5厘米厘米 O的的半径为半径为5厘米厘米。.AEBO例例2:已知:如图,在以:已知:如图,在以O为圆为圆心的两个同心圆中,大圆的弦心的两个同心圆中,大圆的弦AB交小圆于交小圆于C,D两点。两点。求证:求证:ACBD。证明:过证明:过O作作OEAB,垂足为,垂足为E, 则则AEBE,CEDE。 AECEBEDE。 所以,所以,ACBDE.ACDBO判断下列说法的正误判断下列说法的正误 平分弧的直径必平分弧所对的弦平分弧的直径必平分弧所对的弦 平分
7、弦的直线必垂直弦平分弦的直线必垂直弦 垂直于弦的直径平分这条弦垂直于弦的直径平分这条弦 平分弦的直径垂直于这条弦平分弦的直径垂直于这条弦 弦的垂直平分线是圆的直径弦的垂直平分线是圆的直径 平分弦所对的一条弧的直径必垂直这条弦平分弦所对的一条弧的直径必垂直这条弦 在圆中,如果一条直线经过圆心且平分弦,在圆中,如果一条直线经过圆心且平分弦,必平分此弦所对的弧必平分此弦所对的弧 分别过弦的三等分点作弦的垂线,将弦所对分别过弦的三等分点作弦的垂线,将弦所对的两条弧分别三等分的两条弧分别三等分 zxxk1.13001.1300多年前多年前, ,我国隋朝建造的赵州石拱桥我国隋朝建造的赵州石拱桥( (如图如图) )的桥的桥拱是圆弧形拱是圆弧形, ,它的跨度它的跨度( (弧所对是弦的长弧所对是弦的长) )为为 37
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年 郴州市资兴市消防救援大队帮厨招聘考试笔试试题附答案
- 施工平面图绘制系统项目投资可行性研究分析报告(2024-2030版)
- 云南智能计量仪表项目可行性研究报告
- 税务师网盘课件
- 中国仿古白漆行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2025-2031年中国花生牛奶行业发展前景预测及投资方向研究报告
- 2025年中国电子材料行业市场前景预测及投资战略研究报告
- 中国特种陶瓷成型蜡项目投资可行性研究报告
- 中国土矿石开采项目投资可行性研究报告
- 2025年中国炸鸡调料行业市场调研及未来发展趋势预测报告
- 2023版个人征信模板简版(可编辑-带水印)
- 2023-2024学年浙江省慈溪市小学语文六年级期末评估试题附参考答案和详细解析
- 2023年广东广州市公安局招考聘用刑事技术助理70人笔试题库含答案解析
- 海洋之歌(英文)
- 2023年05月福建厦门大学嘉庚学院图书馆馆员公开招聘1人笔试题库含答案解析
- 2023年副主任医师(副高)-内分泌学(副高)考试历年高频考点真题附带含答案
- 招标代理项目考核评分标准表
- 药品注册实用手册专家讲座
- 2023-2024学年内蒙古自治区赤峰市小学语文五年级下册期末高分题
- 初二上学期学生评语初二第一学期学生评语
- GB/Z 22074-2016塑料外壳式断路器可靠性试验方法
评论
0/150
提交评论