




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、秘密启用前2015年重庆十八中高2016级高二上期期末考试模拟一数 学 试 题 卷(理科) 2015.1.7一选择题(本大题共10个小题,每题5分,共50分)1.如果命题"”为假命题,则( )A. 均为真命题 B. 均为假命题 C. 至少有一个为真命题 D. 中至多有一个为真命题2.设双曲线的焦距为,一条渐近线方程为,则此双曲线的方程为( )A. B. C. D. 3.若、m、n是互不相同的空间直线,、是不重合的平面,则下列命题中为真命题的是( )A.若,则 B.若,则C.若,则 D.若,则4. 下列命题中,真命题是 ( )A. B. C.的充要条件是=-1 D.且是的充分条件5.已
2、知两条直线和互相平行,则等于( ) A.1或-3 B.-1或3 C.1或3 D.-1或36. 设a,b,c分别是ABC中,A,B,C所对边的边长,则直线sinA·x+ay+c0与bx-sinB·y+sinC0的位置关系是( )A.平行 B.重合 C.垂直 D.相交但不垂直7.已知圆:,点及点,从点观察点,要使视线不被圆挡住,则实数的取值范围是( )A. B. C. D. 8. 如图,已知F1、F2为椭圆的焦点,等边三角形AF1F2两边的中 点M,N在椭圆上,则椭圆的离心率为( )A. B. C. D. 9. 点P(-3,1)在椭圆的左准线上.过点P且方向为a=(2,-5)的
3、光线,经直线=2反射后通过椭圆的左焦点,则这个椭圆的离心率为( ) ( A ) ( B ) ( C ) ( D ) 10. 在上定义运算若方程有解,则的取值范围是( )A B C D二填空题(本大题共5个小题,每题5分,共25分)11. 已知则的最大值为 12已知,则 13.已知点P是抛物线上的动点,点P在y轴上的射影是M,点A 的坐标是(4,a),则当时,的最小值 (结果用a表示)14. 已知,B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为_ 15.点P在正方体ABCDA1B1C1D1的面对角线BC1上运动,则下列四个命题:三棱锥AD1PC的体积不变;
4、A1P平面ACD1;DPBC1; 平面PDB1平面ACD1.其中正确命题的序号是_三解答题(共6道题,共75分)16 求以原点为圆心,且截直线3x+4y+15=0所得弦长为8的圆的方程17.(13分)如图,在长方体中,点在棱AB上移动.(1)证明:; (2)若,求二面角的大小。 18.(13分)已知曲线E上的点到直线的距离比到点F(0,1)的距离大1(1)求曲线E的方程;(2)若过M(1,4)作曲线E的弦AB,使弦AB以M为中点,求弦AB所在直线的方程.(3)若直线与曲线E相切于点P,求以点P为圆心,且与曲线E的准线相切的圆的方程 19.(12分)如图,直角梯形与等腰直角三角形所在的平面互相垂
5、直, ,(1)求直线与平面所成角的正弦值; (2)线段上是否存在点,使/ 平面 ?若存在,求出的值;若不存在, 说明理由 20、(12分)已知椭圆C: x 23 y 23b2 (b0). (1) 求椭圆C的离心率;(2) 若b1,A,B是椭圆C上两点,且 | AB | ,求AOB面积的最大值.21. 在平面直角坐标系xOy中,抛物线上异于坐标原点的两不同动点、满足(如图所示)()求得重心(即三角形三条中线的交点)的轨迹方程;()的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由 2015年重庆十八中学高2016级高二上期期末考试模拟一 数 学 答 案(理科) 2015.1.7一选
6、择题15 CBBDA 610 DDACA二填空题1126 12.(1,1,-1) 13. 14. 15. 三解答题16. =25 17. 解:以为坐标原点,直线分别为轴,建立空间直角坐标系,设,则(1)(2)设平面的法向量,二面角的大小为由 令,依题意 ,所以,即二面角的大小为. 18.解(1)(2)设,由得,所以直线AB的方程为,即(3)设切点,由得,所以,即点,圆P的半径为2,所以圆P的方程为(x2)2(y1)24.19. 解:(1) 因为平面平面,且,所以BC平面则即为直线与平面所成的角。设BC=,1,则AB=2,所以,则直角三角形CBE中,即直线与平面所成角的正弦值为 (2)假设存在,
7、令。取中点,连结,因为,所以。因为平面平面,所以平面,所以 由两两垂直,建立如图所示的空间直角坐标系则A(0,1,0),B(0,-1,0),C(1,-1,0),D(1,0,0),F(0,)设平面的法向量为, 因为 ,则取,又所以,所以假设成立, 即存在点满足时,有/ 平面 20. ()解:由x23y23b2 得 ,所以e ()解:设A(x1,y1),B(x2,y2),ABO的面积为S如果ABx轴,由对称性不妨记A的坐标为(,),此时S;如果AB不垂直于x轴,设直线AB的方程为ykxm,由 得x23(kxm) 23,即 (13k2)x26kmx3m230,又36k2m24(13k2) (3m23)0,所以 x1x2,x1 x2,(x1x2)2(x1x2)24 x1 x2, 由 | AB |及 | AB |得(x1x2)2, 结合,得m2(13k2)又原点O到直线AB的距离为,所以S,因此 S2(2)2 (2)2,故S当且仅当2,即k±1时上式取等号又,故S max 21. 解:(I)设AOB的重心为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 独家授权网络小说电子版权分销及网络文学版权代理合同
- 国际市场推广策略优化补充协议
- 版权独家授权补充合同范本
- 虚拟现实医疗康复训练系统研发与授权合同
- 国际人才市场招聘与人才输送服务协议
- 股权收益权质押与资产证券化项目合作协议
- 离婚协议财产分割及变更执行仲裁协议(含子女抚养、房产、股权及债权)
- 环保节能设备技术合作与市场推广合同
- 美团餐饮行业市场拓展与合作伙伴合同
- 电子商务中个人信息保护与知情权平衡协议
- 2025年游戏开发与设计专业考试试卷及答案
- 美术高考集训班协议合同
- 中国证券经营行业市场发展现状分析及发展趋势与投资前景研究报告
- 《肺结核的诊断与治疗》课件
- 陕西省咸阳市2025届高三下学期高考模拟检测(三)物理试题(含答案)
- 浙江省温州市2023-2024学年高一下学期期末考试语文试卷(含答案)
- GB 38031-2025电动汽车用动力蓄电池安全要求
- (高清版)DB3301∕T 0411-2023 公共汽电车维修车间建设与管理规范
- 儿童糖尿病酮症酸中毒诊疗指南(2024)解读课件
- 跟我学古筝智慧树知到期末考试答案章节答案2024年丽水学院
- 田字格(绿色标准)
评论
0/150
提交评论