




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.5.1曲边梯形的面积 一、目标导学教学目标:通过对曲边梯形面积的探求,掌握好求曲边梯形的面积的四个步骤分割、以曲代直、逼近、求和;进一步感受有限与无限的联系和极限的思想在数学和实践中的应用;通过求曲边梯形的面积,掌握划归和极限的数学思想方法运用。教学重点:求曲边梯形的面积。教学难点:深入理解“分割、以曲代直、求和、逼近”的思想。教学过程:二、自主探究1.求下图中阴影部分的面积: 2.对于哪些图形的面积,大家会求呢?三、交流点拨(一)问题引入:对于,围成的图形(曲边三角形)的面积如何来求呢?(一问激起千层浪,开门见山,让学生明确本节课的所要学习的内容,对于学生未知的东西,学生往往比较好奇,激
2、发他们的求知欲)今天我们一起来探究这种曲边图形的面积的求法。(二)学生活动1、让学生自己探求,讨论(34分钟)2、让学生说出自己的想法希望学生说出以OAB的面积近似代替曲边三角形的面积,但误差很大,如何减小误差呢?希望学生讨论得出将曲边三角形进行分割,形成若干个曲边梯形。(在讨论的过程中渗透分割的思想)问题:如何计算每个曲边梯形的面积呢?(通过讨论希望学生能出以下三种方案,在讨论的过程中,让学生想到以直代曲,给学生创新的机会)方案一 方案二 方案三方案一:用一个矩形的面积近似代替曲边梯形的面积,梯形分割的越多,三角形的面积越小,小矩形的面积就可以近视代替曲边梯形的面积。方案二:用一个大矩形的面
3、积来近似代替曲边梯形的面积,梯形分割的越多,三角形的面积越小,大矩形的面积来近似代替曲边梯形的面积。方案三:以梯形的面积来近似代替曲边梯形的面积。(对于其中的任意一个曲边梯形,我们可以用“直边”来代替“曲边”(即在很小的范围内以直代曲),这三种方案是本节课内容的核心,故多花点时间引导学生探求,讨论得出,让学生体会“以曲代直”的思想,从近似中认识精确,给学生探求的机会)总结:这样,我们就可以计算出任意一个小曲边梯形的面积的近似值,从而可以计算出整个曲边三角形面积的近似值,(求和),并且分割越细,面积的近似值就越精确,当分割无限变细时,这个近似值就无限逼近所求的曲边三角形的面积。如何求这个曲边三角
4、形的面积,以方案一为例:分割细化将区间等分成个小区间,每个区间的长度为(学生回答),过各个区间端点作轴的垂线,从而得到个小曲边梯形,它们的面积分别记作,。以直代曲对区间上的小曲边梯形,以区间左端点对应的函数值为一边的长,以为邻边的长的小矩形的面积近似代替小曲边梯形的面积。即(当分割很细时,在上任一点的函数值作为矩形的一边长都可以,常取左右端点或中点,这样为以后定积分的定义埋下了伏笔,为学生的解题提供了方法)作和因为每个小矩形的面积是相应的小曲边梯形面积的近似值,所以个小矩形面积之和就是所求曲边三角形面积的近似值:=(复习符号的运用) 逼近当分割无限变细时,即无限趋近于(趋向于) 当趋向时,无限
5、趋近于,无限趋近于,故上式的结果无限趋近于,即所求曲边三角形面积是。(在逼近的过程中,难点是求在此应给学生一些时间探求自然数的平方和,最好在讲数列知识时补充进去。新教材有很多知识点前后顺序编排的有所不妥,有好多知识应该先有伏笔,而不是要用到什么就补充什么,在研究解析几何中直线部分时,这个问题也有所体现)3、分成两组,分别以方案二、方案三按上述四个步骤重新计算曲边三角形的面积,并将操作过程和计算结果与方案一进行比较。(设计的目的是培养学生的合作交流的能力,优化解题方案) 四、拓展建构例1. 求由直线y=2x+1与直线x=0,x=1和y=0所围成的平面图形的面积S【解】(1)分割 在区间 0,1上
6、等间隔地插入n-1个点,将它等分成n个小区间: 分别过上述n-1个分点作垂线,把曲边梯形分成n个小曲边梯形。它们的面积记作(2)近似代替 记f(x)=2x+1,当n很大时,第i个小曲边梯形的面积 可以用小矩形(以为底,为高)的面积近似代替,则有: (3)求和(4)取极限 当n趋向于无穷大时,趋向于S,从而有: S=五、梯度训练1.函数f(x)=x2在区间【(i-1)/n,i/n】上( )A. f(x)的值变化很小 Bf(x)的值变化很大Cf(x)的值不变化 D当n很大时,f(x)的值变化很小2.由y=x,x=0,x=1,y=0围成图形的面积为 3. 求直线x=0,y=0与曲线 所围成的曲边梯形
7、的面积。六、跟进反思:1.5.2汽车行驶的路程主备人:赵秀娟 审核人:王甜甜 时间:一、目标导学教学目标:1体会求汽车行驶的路程有关问题的过程; 2感受在其过程中渗透的思想方法:分割、以不变代变、求和、取极限(逼近)。3了解求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程的共同点;教学重点:掌握过程步骤:分割、以不变代变、求和、逼近(取极限)教学难点:过程的理解教学过程:二、自主探究 1连续函数的概念;2求曲边梯形面积的基本思想和步骤;利用导数我们解决了“已知物体运动路程与时间的关系,求物体运动速度”的问题反之,如果已知物体的速度与时间的关系,如何求其在一定时间内经过的路程呢?三、交流点拨
8、问题引入:汽车以速度组匀速直线运动时,经过时间所行驶的路程为如果汽车作变速直线运动,在时刻的速度为(单位:km/h),那么它在01(单位:h)这段时间内行驶的路程(单位:km)是多少? 分析:与求曲边梯形面积类似,采取“以不变代变”的方法,把求匀变速直线运动的路程问题,化归为匀速直线运动的路程问题把区间分成个小区间,在每个小区间上,由于的变化很小,可以近似的看作汽车作于速直线运动,从而求得汽车在每个小区间上行驶路程的近似值,在求和得(单位:km)的近似值,最后让趋紧于无穷大就得到(单位:km)的精确值(思想:用化归为各个小区间上匀速直线运动路程和无限逼近的思想方法求出匀变速直线运动的路程)1分
9、割在时间区间上等间隔地插入个点,将区间等分成个小区间: , 记第个区间为,其长度为把汽车在时间段,上行驶的路程分别记作: ,显然, 2. 近似代替当很大,即很小时,在区间上,可以认为函数的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点处的函数值,从物理意义上看,即使汽车在时间段上的速度变化很小,不妨认为它近似地以时刻处的速度作匀速直线运动,即在局部小范围内“以匀速代变速”,于是的用小矩形的面积近似的代替,即在局部范围内“以直代取”,则有 3. 求和由,=从而得到的近似值 4. 取极限当趋向于无穷大时,即趋向于0时,趋向于,从而有 思考:结合求曲边梯形面积的过程,你认为汽车行驶的路程
10、与由直线和曲线所围成的曲边梯形的面积有什么关系?结合上述求解过程可知,汽车行驶的路程在数据上等于由直线和曲线所围成的曲边梯形的面积一般地,如果物体做变速直线运动,速度函数为,那么我们也可以采用分割、近似代替、求和、取极限的方法,利用“以不变代变”的方法及无限逼近的思想,求出它在ab内所作的位移四、拓展建构例1弹簧在拉伸的过程中,力与伸长量成正比,即力(为常数,是伸长量),求弹簧从平衡位置拉长所作的功 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解解: 将物体用常力沿力的方向移动距离,则所作的功为(1)分割在区间上等间隔地插入个点,将区间等分成个小区间: , 记第个区
11、间为,其长度为把在分段,上所作的功分别记作: ,(2)近似代替有条件知: (3)求和=从而得到的近似值 (4)取极限所以得到弹簧从平衡位置拉长所作的功为:五、梯度训练1、作匀速(v)直线运动的物体在【0,6】这段时间内,物体所运动的路程S= 2、已知自由下落物体的速度为v=gt,则物体从t=0到t=t0走过的路程 六、跟进反思:1.5.3定积分的概念主备人:赵秀娟 审核人:王甜甜 时间:一、目标导学教学目标:通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分3理解掌握定积分的几何意义;教学重点:定积分的概念、
12、定积分法求简单的定积分、定积分的几何意义教学难点:定积分的概念、定积分的几何意义教学过程:二、自主探究 复习: 1 回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤:分割以直代曲求和取极限(逼近 2对这四个步骤再以分析、理解、归纳,找出共同点三、交流点拨1定积分的概念 一般地,设函数在区间上连续,用分点将区间等分成个小区间,每个小区间长度为(),在每个小区间上取一点,作和式:如果无限接近于(亦即)时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。记为: 其中成为被积函数,叫做积分变量,为积分区间,积分上限,积分下限。说明:(1)定积分是一个常数,即无限趋近
13、的常数(时)称为,而不是 (2)用定义求定积分的一般方法是:分割:等分区间;近似代替:取点;求和:;取极限:(3)曲边图形面积:;变速运动路程;变力做功 2定积分的几何意义 说明:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号(可以先不给学生讲)分析:一般的,设被积函数,若在上可取负值。考察和式不妨设于是和式即为阴影的面积阴影的面积(即轴上方面积减轴下方的面积)2定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1 性质2 (其中k是不为0的常数) (定积分的线性性质)性质3 (定积分的线性性质)性质4 (定积分对积分区间的可加性)说明:推广: 推广: 性质解释:性质4性质112yxo四、拓展建构例1计算定积分分析:所求定积分即为如图阴影部分面积,面积为。即:变式练习:1 解:2 解:例2计算由两条抛物线和所围成的图形的面积.【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。ABCDO解:,所以两曲线的交点为(0,0)、(1,1),面积S=,所以=【点评】在直角坐标系下平面图形的面积的四个步骤:1.作图象;2.求交点;3.用定积分表示所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程线路建设协议书
- 工程合作施工协议书
- 生意加盟协议书
- 家具合作意向协议书
- 工厂委托招工协议书
- 物业返还协议书
- 父亲结婚协议书
- 汽车服务协议书
- 2025年资产评估实务(二)无形资产评估模拟试卷(含评估规范)
- 理发免责协议书
- 2025年四川省绵阳市富乐学校中考模拟英语试题(含答案)
- 2025年教育信息化2.0背景下教师跨学科教学能力培养模式创新与优化
- 2025猪蓝耳病防控及净化指南(第三版)
- 2025年全国保密教育线上培训考试试题库含完整答案(各地真题)附答案详解
- 财务公司调账合同协议
- 2025-2030工业燃气燃烧器行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 配送公司车辆管理制度
- 广西壮族自治区2025年4月高三毕业班诊断学考试物理试卷及答案(广西三模)
- 2025-2030中国建筑装配行业发展分析及竞争格局与发展趋势预测研究报告
- 现代农业产业园入园合同
- 第六单元《军民团结一家亲》课件 中学音乐人音版七年级下册
评论
0/150
提交评论