




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高等数学上册知识点一、 函数与极限(一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;函数在连续 间断点 第一类:左右极限均存在. ( 可去间断点、跳跃间断点) 第二类:左右极限、至少有一个不存在. (无穷间断点、振荡间断点)5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论.(二) 极限1、 定义1) 数列极限 : 2) 函数极限 :左极限: 右极限:2、 极限存在准则1) 夹逼准则: 1)2)
2、 2) 单调有界准则:单调有界数列必有极限.3、 无穷小(大)量1) 定义:若则称为无穷小量;若则称为无穷大量.2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小Th1 ;Th2 (无穷小代换)4、 求极限的方法 1)单调有界准则; 2)夹逼准则; 3)极限运算准则及函数连续性;4) 两个重要极限: a) b) 5)无穷小代换:() a) b) c) ,() d) () e) 二、 导数与微分(一) 导数1、 定义:左导数: , 右导数:函数在点可导2、 几何意义:为曲线在点处的切线的斜率.3、 可导与连续的关系:4、 求导的方法1) 导数定义; 2)基本公式; 3)四则运算; 4
3、)复合函数求导(链式法则);5) 隐函数求导数; 6)参数方程求导; 7)对数求导法.5、 高阶导数1) 定义: 2)Leibniz公式:(二) 微分1) 定义:,其中与无关.2) 可微与可导的关系:可微可导,且三、 微分中值定理与导数的应用(一) 中值定理1、 Rolle定理:若函数满足:1); 2); 3);则.2、 Lagrange中值定理:若函数满足:1);2);则.3、 Cauchy中值定理:若函数满足:1); 2);3)则(二) 洛必达法则(三) Taylor公式(四) 单调性及极值1、 单调性判别法:,则若,则单调增加;则若,则单调减少.2、 极值及其判定定理:a) 必要条件:在
4、可导,若为的极值点,则.b) 第一充分条件:在的邻域内可导,且,则若当时,当时,则为极大值点;若当时,当时,则为极小值点;若在的两侧不变号,则不是极值点.c) 第二充分条件:在处二阶可导,且,则若,则为极大值点;若,则为极小值点.3、 凹凸性及其判断,拐点1)在区间I上连续,若,则称在区间I 上的图形是凹的;若,则称在区间I 上的图形是凸的.2)判定定理:在上连续,在上有一阶、二阶导数,则 a) 若,则在上的图形是凹的; b) 若,则在上的图形是凸的.3)拐点:设在区间I上连续,是的内点,如果曲线经过点时,曲线的凹凸性改变了,则称点为曲线的拐点.(五) 不等式证明1、 利用微分中值定理; 2、
5、利用函数单调性; 3、利用极值(最值).(六) 方程根的讨论1、连续函数的介值定理; 2、Rolle定理; 3、函数的单调性; 4、极值、最值; 5、凹凸性.(七) 渐近线1、 铅直渐近线:,则为一条铅直渐近线;2、 水平渐近线:,则为一条水平渐近线;3、 斜渐近线:,存在,则为一条斜渐近线.(八) 图形描绘四、 不定积分(一) 概念和性质1、 原函数:在区间I上,若函数可导,且,则称为的一个原函数.2、 不定积分:在区间I上,函数的带有任意常数的原函数称为在区间I上的不定积分.3、 基本积分表(P188,13个公式);4、 性质(线性性). (二) 换元积分法1、 第一类换元法(凑微分):2
6、、 第二类换元法(变量代换):(三) 分部积分法:(四) 有理函数积分 : 1、“拆”; 2、变量代换(三角代换、倒代换、根式代换等).五、 定积分(一) 概念与性质:1、 定义:2、 性质:(7条)性质7 (积分中值定理) 函数在区间上连续,则,使 (平均值:)(二) 微积分基本公式(NL公式)1、 变上限积分:设,则推广:2、 NL公式:若为的一个原函数,则(三) 换元法和分部积分1、 换元法: 2、分部积分法:(四) 反常积分1、 无穷积分:, , 2、 瑕积分:(a为瑕点), (b为瑕点)两个重要的反常积分:1) 2) 六、 定积分的应用(一) 平面图形的面积1、 直角坐标: 2、 极
7、坐标: (二) 体积1、 旋转体体积:a)曲边梯形轴,绕轴旋转而成的旋转体的体积: b)曲边梯形轴,绕轴旋转而成的旋转体的体积:(柱壳法)2、 平行截面面积已知的立体:(三) 弧长1、 直角坐标: 2、参数方程:3、极坐标:七、 微分方程(一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同.特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程 ,两边积分(三) 齐次型方程,设,则; 或,设,则(四) 一阶线性微分方程 ,用常数变易法或用公式: (五) 可降阶的高阶微分方程1、,两边积分次;2、(不显含有),令,则;3、(不显含有),令,则(六) 线性微分方程解的结构1、是齐次线性方程的解,则也是;2、是齐次线性方程的线性无关的特解,则是方程的通解;3、为非齐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省宜春巿高安中学2024-2025学年高三3月第一次模拟化学试题含解析
- 江苏省启东汇龙中学2025届初三第二次质检生物试题含解析
- 天津海运职业学院《新能源钻井课程设计》2023-2024学年第二学期期末试卷
- 辽宁建筑职业学院《食品工厂机械与设备A》2023-2024学年第一学期期末试卷
- 上海市崇明区2025届初三化学试题第二次诊断性测验试题含解析
- 曲靖市重点中学2025年初三下学期期末联考生物试题理试题含解析
- 上海商学院《体育测量与统计》2023-2024学年第二学期期末试卷
- 江苏省句容市华阳片区达标名校2024-2025学年初三年第二学期期中语文试题试卷含解析
- 可克达拉职业技术学院《广播电视写作(一)》2023-2024学年第二学期期末试卷
- 南昌大学《正书创作》2023-2024学年第一学期期末试卷
- 2005室外给水管道附属构筑物阀门井05S502
- 浙江省宁波市镇海中学2025届高三数学下学期适应性考试试题含解析
- 家长写孩子在家学习情况的发言稿
- 新能源发电技术 课件 第一章-新能源发电概述
- 心理健康《欣赏我自己》课件
- 北师大版八年级数学下册常考题专练专题09与旋转有关的最值问题(原卷版+解析)
- 大学生心理素质训练智慧树知到期末考试答案章节答案2024年九江职业技术学院
- 周转车使用管理制度
- 云南省烟叶生产基础设施建设管理规程
- 夫妻约法三章协议书模板
- 2024年湖南高考物理卷试题真题解读及答案详解
评论
0/150
提交评论