高中数学导数及其应用复习题_第1页
高中数学导数及其应用复习题_第2页
高中数学导数及其应用复习题_第3页
高中数学导数及其应用复习题_第4页
高中数学导数及其应用复习题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第四讲 导数及其应用高考在考什么.【考题回放】1已知对任意实数,有,且时,则时( B )ABCD2曲线在点处的切线与坐标轴所围三角形的面积为( D )3设在内单调递增,则是的(B)充分不必要条件必要不充分条件充分必要条件既不充分也不必要条件4设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是( D )5函数的单调递增区间是6若直线y=x是曲线y=x3-3x2+ax的切线,则a= ;高考要考什么1 导数的定义:2 导数的几何意义:(1) 函数在点处的导数,就是曲线在点处的切线的斜率;(2)函数在点处的导数,就是物体的运动方程在时刻时的瞬时速度;3要熟记求导公式、导数的运算法则、复

2、合函数的导数等。尤其注意:和。4求函数单调区间的步骤:1)、确定f(x)的定义域,2)、求导数y,3)、令y>0(y<0),解出相应的x的范围。当y>0时,f(x)在相应区间上是增函数;当y<0时,f(x)在相应区间上是减函数5求极值常按如下步骤: 确定函数的定义域; 求导数; 求方程=0的根及导数不存在的点,这些根或点也称为可能极值点;通过列表法, 检查在可能极值点的左右两侧的符号,确定极值点。6设函数f(x)在a,b上连续,在(a,b)内可导,求f(x)在a,b上的最大(小)值的步骤如下:(1)求f(x)在(a,b)内的极值,(2)将f(x)的各极值与f(a),f(

3、b)比较,其中最大的一个是最大值,最小的一个是最小值。7最值(或极值)点必在下列各种点之中:导数等于零的点、导数不存在的点、端点。 突 破 重 难 点【范例1】已知函数在处取得极值. (1)讨论和是函数f(x)的极大值还是极小值;(2)过点作曲线y= f(x)的切线,求此切线方程.(1)解:,依题意,即 解得. . 令,得.若,则,故f(x)在上是增函数,f(x)在上是增函数.若,则,故f(x)在上是减函数.所以,是极大值;是极小值.(2)解:曲线方程为,点不在曲线上.设切点为,则点M的坐标满足.因,故切线的方程为注意到点A(0,16)在切线上,有 化简得,解得.所以,切点为,切线方程为.【点

4、晴】过已知点求切线,当点不在曲线上时,求切点的坐标成了解题的关键.【范例2】(安徽理)设a0,f (x)=x1ln2 x2a ln x(x>0).()令F(x)xf(x),讨论F(x)在(0.)内的单调性并求极值;()求证:当x>1时,恒有x>ln2x2a ln x1.解:()根据求导法则有,故,于是,列表如下:20极小值故知在内是减函数,在内是增函数,所以,在处取得极小值()证明:由知,的极小值于是由上表知,对一切,恒有从而当时,恒有,故在内单调增加所以当时,即故当时,恒有【点晴】本小题主要考查函数导数的概念与计算,利用导数研究函数的单调性、极值和证明不等式的方法,考查综合

5、运用有关知识解决问题的能力【范例2】已知定义在正实数集上的函数,其中设两曲线,有公共点,且在该点处的切线相同(I)用表示,并求的最大值;(II)求证:()解:()设与在公共点处的切线相同,由题意,即由得:,或(舍去)即有令,则于是当,即时,;当,即时,故在为增函数,在为减函数,于是在的最大值为()设,则故在为减函数,在为增函数,于是函数在上的最小值是故当时,有,即当时,【点晴】本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力变式:已知函数. (1)求函数y= f(x)的反函数的导数 (2)假设对任意成立,求实数m的取值范围.解:(1);(2)令:所以都是增函数.因此当时,的最大值为的最小值为而不等式成立当且仅当即,于是得 解法二:由得设于是原不等式对于恒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论