版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章 向量代数与空间解析几何5.1向量既有大小又有方向的量表示:或(几何表示)向量的大小称为向量的模,记作、|a|、1 方向余弦: r(x,y,z),| r |=2 单位向量 模为1的向量。3 模4 向量加法(减法)5 a·b| a |·| b |cosaba·b0(a·bb·a)6 叉积、外积|ab| =| a | b |sin= a/bab0.( ab= - ba) 7 数乘:例1 ,与夹角为,求。解 例2 设,求。解 根据向量的运算法则例3 设向量,为实数,试证:当模x最小时,向量x必须垂直于向量b。解 由,得,于是由此可知,当时,模最
2、小,因而故所以,当模x最小时,向量x必须垂直于向量b。8 向量的投影Prjb|b|为向量b在向量a上的投影。a·b| a |Prjb5.2空间平面与直线5.2.1 空间平面点法式方程:与定点连线和非零向量n(a,b,c)垂直的点的集合。平面的一般方程:,n(A,B,C)截距式方程:三点式方程 例1 求过,点的平面方程解(1)点法式n。则平面方程为,即。解(2)设平面方程为,代入得。代入,得解之得代入方程消去A,得方程为例2 一平面通过点,它在正轴,正轴上的截距相等,问此平面在三坐标面上截距为何值时,它与三个坐标平面围成的四面体的体积最小?并写出此平面方程。解 依题意设所求平面的截距式
3、方程为,由于点在此平面上,故有,解之。四面体之体积,令得。例3 求过点,和三点的平面方程。解 由三点式方程故所求方程为,即5.2.2 空间直线方向向量:平行于一已知直线的任一向量称为直线的方向向量。易知直线上的任一向量都平行于直线的方向向量.若设已知向量为,则直线的对称式方程为一般式方程:参数式方程:例1 求过点点,且与直线平行的直线方程解 将直线写成,以为参数,则,故直线方程为例2 求过点且平行于平面,又与直线相交的直线方程。解 设Q为两直线的交点,则,即,(1)又Q在L上:(2)令(2)=t 解得x, y, z代入(1)解得,在反代入(2)得Q的坐标为,得直线为5.3点、平面、直线的位置关
4、系1 点到平面的距离点到平面Ax+By+Cz+D=0得距离公式为:d =例1 求平面和平面的交角平分面方程。平分面上的点到两面之间距离相等,故整理得:或例2 求平行于平面且与球面相切的平面方程。解 由于所求平面与平行,故可设其为。因为与球面相切,所以球心到的距离,解之,故所求平面方程为和2 点到直线的距离点到直线L的距离为 例3 求点到直线的距离。解 ,于是所求距离 3. 两平面之间的夹角平面和平面的夹角,cos、互相垂直相当于0;、互相平行或重合相当于.4两直线的夹角两直线的法线向量的夹角(通常指锐角)叫做两直线的夹角.直线和的夹角cos=(5)两直线、互相垂直相当于0;两直线、互相平行或重
5、合相当于5. 直线与平面的夹角直线s=(m,n,p),平面n(A,B,C)夹角为sin直线垂直于平相当于;直线平行于或直线在平面上相当于Am+Bn+Cp=0.6平面束过直线L的平面束方程为例1 求直线在平面上的投影直线的方程。解 直线的方程即为,故过的平面束方程为即因为此平面与平面垂直,故有解得,于是与垂直的平面方程为即,从而所求投影直线方程为5.4其它(旋转曲面方程)绕谁转谁不变,令一个用另两个变量的平方和的平方根代入故绕轴旋转,得为旋转曲面方程。例1 绕x轴转得,绕z轴转得。例2 曲线绕z轴旋转,求旋转曲面方程。解 绕z轴旋转时,代入上式得例3 求 绕z轴旋转所得旋转曲面方程。解 承上题:,令,则例4 求直线在平面上的投影直线的方程,并求绕轴旋转一周所成曲面的方程。解 将直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理SBAR交班在临床中的应用
- (新教材)2026年沪科版八年级下册数学 19.2.2 平行四边形的判定 课件
- 2025年鲍鱼养殖海域使用协议
- T-CES 217-2023 低压配电网馈线监测装置技术规范
- 黄埔区2025年第二次招聘社区专职工作人员备考题库含答案详解
- 超声妇产科试题库及答案
- 2026 年中职经管类(管理学原理)试题及答案
- 2025年应急救援知识竞赛题及答案(共90题)
- 标准的性格测试题及答案
- 2025年运输工程考试题库及答案
- 高层建筑火灾风险评估与管理策略研究
- 综合管线探挖安全专项施工方案
- GB/T 37507-2025项目、项目群和项目组合管理项目管理指南
- 华为管理手册-新员工培训
- 社保补缴差额协议书
- 2025成人有创机械通气气道内吸引技术操作
- 2025年江苏省职业院校技能大赛高职组(人力资源服务)参考试题库资料及答案
- 东北农业大学教案课程肉品科学与技术
- 成都市金牛区2025届初三一诊(同期末考试)语文试卷
- 如何应对网络暴力和欺凌行为
- 现代技术服务费合同1
评论
0/150
提交评论