




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、欧拉积分及其简单应用 引言:我们知道无穷级数是构造新函数的一种重要工具,利用它我们可以构造出处处连续而处处不可微的函数,还可以构造出能填满正方形的连续曲线(参见常庚哲、史济怀著数学分析教程第三册第17章17.8)含参量积分是构造新函数的另一重要工具,欧拉积分就是在应用中经常出现的含参量积分表示的函数。它虽身为含参量积分的一种特例,被教科书编用于加深对含参量积分所表示的函数的分析方法的理解。但本身也是许多积分的抽象概括,能为相关积分的计算带来方便。欧拉积分包括:伽马(Gamma)函数:(s)=, s0.-(1) 贝塔(Beta)函数:B(p,q)= , p0, q0-(2)下面我们分别讨论这两个
2、函数的性质:一、B函数Euler第一积分1、 定义域:B(p,q)=+= + 对 = 当x0时. = 其收敛须p0对=. 当x1时 , =,令.1-x=t= 其收敛须.q0. B(p,q) 定义域为p0,q0.2、 连续性因为对p。0,q。0有pp。,qq。而收敛,故由魏尔斯特拉斯M判别法知B(p,q)在p。p+,q。q0,q0内连续。3、 对称性B(p,q)=B(p,q)作变换 x=1-y, 得B(p,q)= = B(q,p)4、 递推公式B(p,q)=B(p,q-1)(p0,q1)(1)B(p,q)=B(p-1 ,q)(p1,q0).(2)B(p,q)= B(p-1,q-1)(p1,q1)
3、(3)B(p ,q)=B(p+1,q)+ B(p,q+1)(p-1,q-1).(4)下面只证明(1);(2)可由对称性及公式(1)推出;(3 )、(4)可由公式(1).、(2.推得;当P0,q1时,有B(p,q)=+= B(p,q1) B(p,q)移项并整理得(1)5、 B(p,q)的其他形式a,令x=则B(p,q)=2特别的当p=q=, B(p,q) =B(,)=b.令x= 当 x:01 有 t :+0B(p,q)= =+考察,令t=,则有=.B(p,q) =二、函数Euler第二积分1、定义域(s)=+= + 其中 = ,当s1时是正常积分;当0s0时是收敛的无穷限反常积分(也可用柯西判别
4、法推得);所以,函数在s0时收敛,即定义域为s0.2、连续性在任何闭区间a,b(a0)上,对 ,当0x1时有由于收敛,从而 在a,b上一致收敛;对于 ,当1x0上连续3、可微性=(利用狄利克雷判别法)它在任何闭区间a,b(a0)上一致收敛.(s)在a,b上可导.由a,b的任意性,(s)在s0上可导,且(s)= s0.依照上面的方法,还可推得(s) 在s0上存在任意阶导数: (s)=.s0.4、递推公式 (s+1)=s(s) 证:分部积分法=+=+设A+,就得到(s)的递推公式:(s+1)=s(s)设nsn+1,即0sn1,应用递推公式n次可得到(s+1)=s(s)=s(s-1)(s-1)=.=
5、s(s-1)(s-2)(s-n)(s-n)因(1)=1 若s为正整数n+1,则(n+2)=(n+1)n.2(1)=(n+1)!从上可以看出:(2) . 函数是阶乘的推广(x)!(2)如果已知(s)在0s1上的值,那么在其他范围内的函数值可由它计算出来,即可做出一个函数值表三、函数与函数之间的关系当m,n为正整数时,反复应用函数的递推公式可得:(m,n)=(m,n-1)=(m,1)又由于(m,1)=,所以(m,n)= =即(m,n)= 一般地,对于任何正实数p、q也有相同的关系:(p,q)= 证:对于函数,令x=,则,于是,从而4=4令,由二重积分化为累次积分计算公式有=, 所以4=4.(4)这
6、里D为平面上第一象限部分。下面讨论(4)式右边的反常二重积分。记于是有4=4,对上式右边积分应用极坐标变换,则可得4=2=2(p+q)再由函数其他形式(a)就得到(p,q)(p+q)四、在计算积分之中的应用1、积分值计算:例1、解:原式=参考文献:【1】、华东师范大学数学系,数学分析M, (上,下册)北京:高等教育出版社2007【2】、李铁木 编著分析提纲与命题证明M,(第二册)北京:宇航出版社,1986 【3】、费定辉,周学圣等,吉米多维奇数学分析习题集题解(五)M,济南:山东科学技术出版社,1999 【4】裴礼文. 数学分析中的典型问题与方法M . 北京: 高等教育出版社, 1993.【5
7、】. 菲赫金哥尔茨. 微积分学教程M . 北京:高等教育出版社,1986. Solving definite integral calculation by using Euler integral Wang QingGuo Abstract : In this paper, aiming at solving some very difficult definite integral calculation problems ,these problems are transformed into Euler integral through certain transformation at first ,then these problems are solved easily by using some of properties of Euler integral,so it provides an effective metho
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水产干腌制过程中的颜色变化考核试卷
- 炼铁产业链优化与整合考核试卷
- 双十一胜利密码
- 内蒙古鸿德文理学院《健康教育学》2023-2024学年第一学期期末试卷
- 江苏省泰州市高港区许庄中学2025届初三下学期开学暑假验收考试生物试题含解析
- 内蒙古自治区呼和浩特市四中学2024-2025学年初三下学期9月阶段性检测试题化学试题含解析
- 宁夏艺术职业学院《基因工程原理》2023-2024学年第二学期期末试卷
- 四川省遂宁市重点中学2024-2025学年初三下学期第一次大练习(期末)生物试题含解析
- 焦作大学《医学微生物学A》2023-2024学年第二学期期末试卷
- 山西省泽州县晋庙铺镇拦车初级中学校2025年初三第一次中考模拟统一考试(物理试题文)试题含解析
- 新高考:地理选科指导
- 各种变频器的使用说明书.lg-ig53parameter list
- GB/T 19582.2-2008基于Modbus协议的工业自动化网络规范第2部分:Modbus协议在串行链路上的实现指南
- GA/T 1799-2021保安安全检查通用规范
- 细胞的能量“货币”ATP说课课件-高一上学期生物人教版必修1
- 解剖学课件神经系统课件
- 《基于绘本阅读的幼儿语言能力发展研究(论文)》9300字
- 印巴战争(修改稿)
- 工程项目管理实施方案(5篇)
- 2021年全国质量奖现场汇报材料-基础设施、设备及设施管理过程课件
- 防爆电气失爆判别标准和常见失爆现象汇总
评论
0/150
提交评论