




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第18讲 二次函数在闭区间上的最值一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值。分析:将配方,得顶点为、对称轴为 当时,它的图象是开口向上的抛物线,数形结合可得在m,n上的最值:(1)当时,的最小值是的最大值是中的较大者。(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值是 当时,可类比得结论。二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类
2、问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。例1. 函数在区间0,3上的最大值是_,最小值是_。解:函数是定义在区间0,3上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在0,3上,如图1所示。函数的最大值为,最小值为。图1练习. 已知,求函数的最值。解:由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2
3、所示。函数的最小值为,最大值为。图22、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。例2. 如果函数定义在区间上,求的最小值。解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。图1如图2所示,若顶点横坐标在区间上时,有,即。当时,函数取得最小值。图2如图3所示,若顶点横坐标在区间右侧时,有,即。当时,函数取得最小值综上讨论,图8例3. 已知,当时,求的最大值解:由已知可求对称轴为(1)当时,(2)当,即时,根据对称性若即时,若即时,(3)当即时,综上,
4、观察前两题的解法,为什么最值有时候分两种情况讨论,而有时候又分三种情况讨论呢?这些问题其实仔细思考就很容易解决。不难观察:二次函数在闭区间上的的最值总是在闭区间的端点或二次函数的顶点取到。第一个例题中,这个二次函数是开口向上的,在闭区间上,它的最小值在区间的两个端点或二次函数的顶点都有可能取到,有三种可能,所以分三种情况讨论;而它的最大值不可能是二次函数的顶点,只可能是闭区间的两个端点,哪个端点距离对称轴远就在哪个端点取到,当然也就根据区间中点与左右端点的远近分两种情况讨论。根据这个理解,不难解释第二个例题为什么这样讨论。对二次函数的区间最值结合函数图象总结如下: 当时 当时 3、轴变区间定二
5、次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。例4. 已知,且,求函数的最值。解:由已知有,于是函数是定义在区间上的二次函数,将配方得:二次函数的对称轴方程是顶点坐标为,图象开口向上由可得,显然其顶点横坐标在区间的左侧或左端点上。函数的最小值是,最大值是。图3例5. (1) 求在区间-1,2上的最大值。(2) 求函数在上的最大值。解:(1)二次函数的对称轴方程为,当即时,; 当即时,。综上所述:。(2)函数图象的对称轴方程为,应分,即,和这三种情形讨论,下列三图分别为(1);由图可知(2);由图可知(3) 时;由图可知;即4
6、. 轴变区间变二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数在动区间上的最值”。例6. 已知,求的最小值。解:将代入u中,得,即时,即时,所以(二)、逆向型是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。例7. 已知函数在区间上的最大值为4,求实数a的值。 解:(1)若,不符合题意。(2)若则由,得(3)若时,则由,得综上知或例8.已知函数在区间上的最小值是3最大值是3,求,的值。解法1:讨论对称轴中1与的位置关系。若,则解得若,则,无解若,则,无解若,则,无解综上,解析2:由,知,则,又在上当增大时也增大所以解得评注:解法2利用闭区间上的最值不超过整
7、个定义域上的最值,缩小了,的取值范围,避开了繁难的分类讨论,解题过程简洁、明了。例9. 已知二次函数在区间上的最大值为3,求实数a的值。这是一个逆向最值问题,若从求最值入手,需分与两大类五种情形讨论,过程繁琐不堪。若注意到最大值总是在闭区间的端点或抛物线的顶点处取到,因此先计算这些点的函数值,再检验其真假,过程就简明多了。具体解法为:(1)令,得此时抛物线开口向下,对称轴方程为,且,故不合题意;(2)令,得此时抛物线开口向上,闭区间的右端点距离对称轴较远,故符合题意;(3)若,得此时抛物线开口向下,闭区间的右端点距离对称轴较远,故符合题意。综上,或解后反思:若函数图象的开口方向、对称轴均不确定
8、,且动区间所含参数与确定函数的参数一致,可采用先斩后奏的方法,利用二次函数在闭区间上的最值只可能在区间端点、顶点处取得,不妨令之为最值,验证参数的资格,进行取舍,从而避开繁难的分类讨论,使解题过程简洁、明了。开拓视野 其他类型的函数2、已知函数,其中常数a 0(1) 当a = 4时,证明函数f(x)在上是减函数;(2) 求函数f(x)的最小值2解:(1) 当时,1分 任取0x1x22,则f(x1)f(x2)=3分因为0x10,即f(x1)f(x2)5分所以函数f(x)在上是减函数;6分(2),7分当且仅当时等号成立,8分当,即时,的最小值为,10分当,即时,在上单调递减,11分所以当时,取得最
9、小值为,13分综上所述: 14分17(满分20分)本题有2小题,第1小题12分,第2小题8分设为定义域为的函数,对任意,都满足:,且当时,(1)请指出在区间上的奇偶性、单调区间、最大(小)值和零点,并运用相关定义证明你关于单调区间的结论;(2)试证明是周期函数,并求其在区间上的解析式17解:(1)偶函数;. 最大值为、最小值为0;.单调递增区间:单调递减区间:;. 零点:. 单调区间证明:当时,设,证明在区间上是递增函数由于函数是单调递增函数,且恒成立,所以,所以,在区间上是增函数证明在区间上是递减函【证法一】因为在区间上是偶函数对于任取的,有所以,在区间上是减函数 【证法二】设,由在区间上是
10、偶函数,以下用定义证明在区间上是递减函数 (2)设,所以,2是周期 当时,所以21(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数(是常实数)(1)若函数的定义为R,求的值域;(2)若存在实数t使得是奇函数,证明的图像在图像的下方21解:(1)因为恒成立,所以,当时,的值域为; 当时,由得,因而 即的值域为 。(2)由是奇函数得,所以 当“=”成立时,必有,即,此式显然不成立 所以对任意实数x都有即的图像在图像的下方 23已知函数,如果存在给定的实数对(),使得恒成立,则称为“S-函数”.(1)判断函数是否是“S-函数”;(2)若定义域为的函数是“S-函数”,
11、且存在满足条件的有序实数对和,当时,的值域为,求当时函数的值域.解:(1)若是“S-函数”,则存在常数,使得 (a+x)(a-x)=b.即x2=a2-b时,对xR恒成立.而x2=a2-b最多有两个解,矛盾,因此不是“S-函数” 若是“S-函数”,则存在常数a,b使得,即存在常数对(a, 32a)满足.因此是“S-函数” (3) 函数是“S-函数”,且存在满足条件的有序实数对和,于是即, ,.14分.16分 因此, 综上可知当时函数的值域为.18分三、巩固训练1函数在上的最小值和最大值分别是 ( ) 1 ,3 ,3 (C) ,3 (D), 32函数在区间 上的最小值是 () 23函数的最值为 ()最大值为8,最小值为0不存在最小值,最大值为8 (C)最小值为0, 不存在最大值 不存在最小值,也不存在最大值4若函数的取值范围是_5已知函数上的最大值是1,则实数a的值为 6如果实数满足,那么有 ( ) (A)最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设施设备转让合同协议
- 购青贮合同协议
- 解除委托拍卖合同协议
- 贷款机合同协议
- 设计合同补充协议书格式
- 设计制作类合同协议
- 购销产品合同协议书范本
- 购买改装件喷漆合同协议
- 2025年大学物理考试创新考点试题及答案
- 广东省广雅中学2024-2025学年高一下学期期中考试英语试题(原卷版+解析版)
- 2024华能四川能源开发有限公司下属单位招聘笔试参考题库附带答案详解
- 历年贵州特岗试题及答案
- 2025怎样正确理解全过程人民民主的历史逻辑、实践逻辑与理论逻辑?(答案3份)
- 钢结构高处作业安全管理
- JJF 2221-2025导热系数瞬态测定仪校准规范
- 华为手机协议合同
- 甘肃省陇南市礼县第六中学2024-2025学年八年级下学期第一次月考数学试卷(无答案)
- 公司两班倒管理制度
- 浅谈南京市区地形地貌和工程地质层构成
- 完整版高中古诗文必背72篇【原文+注音+翻译】
- 财务英文词汇大全
评论
0/150
提交评论