旋转全章复习与巩固知识讲解基础_第1页
旋转全章复习与巩固知识讲解基础_第2页
旋转全章复习与巩固知识讲解基础_第3页
旋转全章复习与巩固知识讲解基础_第4页
旋转全章复习与巩固知识讲解基础_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.31旋转全章复习与巩固-知识讲解(基础)【学习目标】1、 通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、 能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计【知识网络】【要点梳理】要点一、旋转1. 旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心

2、,转动的角叫做旋转角(如AO A),如果图形上的点A经过旋转变为点A,那么,这两个点叫做这个旋转的对应点. 要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA);(2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等(ABC).要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3. 旋转的作图: 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;

3、(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心这两个图形中的对应点叫做关于中心的对称点要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同; (2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等

4、的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等不同点定义把一个图形沿某一方向移动一定距离的图形变换把一个图形沿着某一条直线折叠的图形变换把一个图形绕着某一定点转动一个角度的图形变换图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共

5、线)且相等任意一对对应点所连线段被对称轴垂直平分对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角对应线段平行(或共线)且相等任意一对对应点所连线段被对称轴垂直平分*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角, 即:对应点与旋转中心连线所成的角彼此相等【典型例题】类型一、旋转1.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°. 以上四位同学的回答中,错误的是( ).A甲 B. 乙 C. 丙 D. 丁【

6、答案】B.【解析】因为圆被平分为8部分,所以旋转45°,90°,135°均能与原图形重合.【总结升华】同一图形的旋转角可以是多个.举一反三:【变式】以图1的边缘所在直线为轴将该图案向右翻折180°后,再按顺时针方向旋转180°,所得到图形是( ).【答案】A.类型二、中心对称2. 如图,ABC是ABC旋转后得到的图形,请确定旋转中心、旋转角.【答案与解析】对应点到旋转中心的距离相等,即OA=OA O点在AA的垂直平分线上 同理O点也在BB的垂直平分线上 两条垂直平分线的交点O就是旋转中心,AOA的度数就是旋转角【总结升华】中心对称的对应点到对称

7、中心的距离相等,所以对称中心在对应点的垂直平分线上. 举一反三:【变式】下列图形中,既是中心对称图形又是轴对称图形的是(). A B C D【答案】A.类型三、平移、轴对称、旋转3. 如图,设P是等边三角形ABC内一点,PB=3,PA=4,PC=5,求APB的度数.【思路点拨】因为是等边三角形ABC,所以有等线段,又因为已知的三边的长度是3,4,5,是一组勾股数,所以应该想到运用旋转构造直角三角形.【答案与解析】ABC为等边三角形,AB=AC,BAC=60°.将PAB绕点A逆时针旋转60°,得到DAC,PABDAC PA=AD=4,PB=CD=3,APB=ADC在RtPCD

8、中,PC=5, . PDC=90° PA=AD,PAD=60°, PAD为等边三角形 PDA=60° ADC=PDA+PDC=150°, APB=150°【总结升华】要将题目条件中的三条线段尽可能集中在一个三角形中,而且出现等腰(或等边)三角形就可以利用旋转思想来构造全等三角形.举一反三:【变式】 已知D是等边ABC外一点,BDC=120º.求证:AD=BD+DC.【答案】ABC为等边三角形,AB=AC,BAC=60°.将ABD绕点A逆时针旋转60°,得到EAC,DABEAC,即ABD=ACE,四边形ABCD中,B

9、DC=120º, BAC=60°,DBA+DCA=180°,即ACE+DCA=180°,点D,C,E三点共线.BD+DC=CE+DC=DE.又DBE=60°. ADE是等边三角形, 即DE=AD. BD+DC=AD.4如图,在四边形ABCD中,ABC30°,ADC60°,AD=CD. 求证:BD2=AB2+BC2. 【思路点拨】利用AD=CD可以将BCD绕点D逆时针 旋转60°,从而把条件集中到一个三角形中. 【答案与解析】证明:AD=CD,ADC=60°,BCD绕点D逆时针旋转60°,得到EA

10、D,BDE=CDA=60°,BCDEADBC=AE, BD=DE,DAE=DCB,BDE为等边三角形BE=BD在四边形ABCD中,ABC30°,ADC60°,DCB+DAB=270°,即DAE+DAB=270°BAE=90°在RtBAE中,【总结升华】由求证可知应该建立一个直角三角形,再由已知知道有30°,60°的角,有等线段,可以构想通过旋转构建直角三角形.5 、正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上(1)如图连结DF、BF,试问:当正方形AEFG绕点A旋转时,DF、BF的长

11、度是否始终相等?若相等请证明;若不相等请举出反例.(2)若将正方形AEFG绕点A顺时针方向旋转,连结DG,在旋转过程中,能否找到一条线段的长度与线段DG的长度相等,并画图加以说明. 【答案与解析】(1)如图, DF、BF的长度不是始终相等,当点F旋转到AB边上时,DF>AD>BF.(2)线段BE=DG 如图: 正方形ABCD和正方形AEFGAD=AB,AG=AE,1+2=2+3DAG=BAE ADGABE DG=BE【总结升华】利用旋转图形的不变性确定全等三角形.举一反三:【变式】.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形ABCD,则它们的公共部分

12、的面积等于_【答案】不妨设CD与BC交点为P,则两个正方形关于AP所在的直线对称,因此只需算出三角形ADP的面积即可. 又BAD=60°,所以DAP=30°,因此三角形ADP的面积可算, ,所以公共部分面积为6. 如图,已知ABC为等腰直角三角形,BAC=900,E、F是BC边上点且EAF=45°.求证:【思路点拨】通过求证可以猜测要证得直角三角形,所以可以考虑旋转.【答案与解析】 ABC为等腰直角三角形且BAC=90° AB=AC, 将CAF绕点A顺时针旋转90°,如图,得到 ,, , 连结,则在中, , , 又 , . 又 , 在与中, .

13、 , 由得:.【总结升华】旋转性质:旋转前,后的图形全等.一、选择题1将叶片图案旋转180°后,得到的图形是( ).2.如图,在等腰直角ABC中,B=90°,将ABC绕顶点A逆时针方向旋转60°后得到ABC,则等于( ).A.60° B.105° C.120°D.135°3. 如图,如果一个四边形ABCD旋转后能与另一个正方形重合,那以该图形所在的平面可以作旋转中心的点有( )个A、1 B、2 C、3 D、4 第2题 第3题 第4题4如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1)如果将矩形0ABC

14、绕点O旋转180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为().A(2,1) B(2,1) C(2,1) D(2,l)5. 如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为( ).A. B. C. D.6右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是().A90° B60°C45°D30°第5题 第6题7轴对称与平移、旋转的关系不正确的是( ).A经过两次翻折(对称轴平行)后的图形可以看作是原图形经过次平移得到的B经过两次翻折(对称轴不平行)后的图形可以看作是原图形经过次平移得到的C经过两

15、次翻折(对称轴不平行)后的图形可以看作是原图形经过旋转得到的D经过几次翻折(对称轴有偶数条且平行)后的图形可以看作是经过次平移得到的8在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA,则点A的坐标是( ).A.(-4,3) B.(-3,4) C.(3,-4) D.(4,-3)二. 填空题9. 正三角形绕中心旋转度的整倍数之后能和自己重合.10. 在平面直角坐标系xOy中,直线y=-x绕点O顺时针旋转90°得到直线,直线与反比例函数的图象的一个交点为A(a,3),则反比例函数的解析式是_.11在平行四边形、矩形、菱形、正方形、等腰梯形五种图形中

16、,既是轴对称图形,又是中心对称图形的是_.12如图所示,四边形ABCD是正方形,点E是边CD上一点,点F是CB延长线上一点,且DEBF,连结FE,此时AEF是如果FB1,EC2,则正方形ABCD的面积是13如图,直角梯形ABCD中,ADBC,ABBC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,ADE的面积为3,则BC的长为_ 第12题 第13题 第14题14. 如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1以点A为中心,把ADE顺时针旋转90°,得ABE',连接EE',则EE'的长等于_15. 如图,在平面直

17、角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA,则点A的坐标是_ 第15题 第16题16如图所示,将ABC沿AB翻折后形成ABE,再将ABE绕点A顺时针旋转一定角度后,使点E与点C重合,若1:2:328:5:3则此次旋转过程中的旋转角是_三 综合题 17如图,在RtABC中ACB=90°,AC=BC,点 D、E是斜边AB上的两点,且DCE=45°求证:AD2+BE2=DE2 18. 如图,在ABC中,AB=AC,点P是ABC内一点,且APB=APC求证:BP=CP19.已知:如图在ABC中,AB=AC,若

18、将ABC绕点C顺时针旋转180°得到FEC(1)试猜想AE与BF有何关系?说明理由(2)若ABC的面积为3cm2,求四边形ABFE的面积;(3)当ACB为多少度时,四边形ABFE为矩形?说明理由20. 已知,点P是正方形ABCD内的一点,连PA、PB、PC.(1)将PAB绕点B顺时针旋转90°到PCB的位置(如图1). 设AB的长为a,PB的长为b(b<a),求PAB旋转到PCB的过程中边PA所扫过区域(图 1中阴影部分)的面积; 若PA=2,PB=4,APB=135°,求PC的长.(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上. 【答

19、案与解析】一、选择题1【答案】 D.2【答案】 B.【解析】BAC=BAB+BAC=60°+45°=105°. 2题图 5题图3【答案】C.【解析】旋转中心的点分别是点D,点C,和线段DC的中点.4【答案】C.5【答案】C.【解析】,= .6【答案】 C.【解析】旋转的角度应该是45°的倍数.7【答案】 B.8.【答案】 A.【解析】逆时针旋转90°,点A在第二象限,利用三角形全等可得.二、填空题9.【答案】12O.10.【答案】. 【解析】直线y=-x绕点O顺时针旋转90°得到直线,即,因为交点为A(a,3),所以a=3, 即.11

20、【答案】矩形,菱形,正方形.【解析】所有的平行四边形都是中心对称图形,但不一定是轴对称图形;等腰梯形是轴对称图形,但不是中心对称图形.12【答案】等腰直角三角形;9.【解析】由ABFADE,得到AF=AE,BAF=DAE,即AEF是等腰直角三角形. 12题图 13题图13【答案】5.【解析】做DFBC,EGAD,交AD的延长线于点G ,则AD=BF, 可证得DEGDCF,即EG=FC,又因为,所以EG=3,即BC=BF+FC=AD+EG=5.14【答案】.【解析】AE=AE,EE=.15【答案】(b+1,1-a).【解析】因为AC=b,BC=a-1,所以BD=b,AD=a-1,又因为点B(1,0),所以OD=b+1,AD=a-1,因为点A在第四象限,所以点A(b+1,a-1).16【答案】80°.三.解答题17.【解析】证明:将ACD沿顺时针方向绕点C旋转 90°至BCF的位置则有ACDBCFCD=CF,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论