电磁场与电磁波第三章静态场及其边值问题的解_第1页
电磁场与电磁波第三章静态场及其边值问题的解_第2页
电磁场与电磁波第三章静态场及其边值问题的解_第3页
电磁场与电磁波第三章静态场及其边值问题的解_第4页
电磁场与电磁波第三章静态场及其边值问题的解_第5页
已阅读5页,还剩108页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版1第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版2 本章内容本章内容 3.1 静电场分析静电场分析 3.2 导电媒质中的恒定电场分析导电媒质中的恒定电场分析 3.3 恒定磁场分析恒定磁场分析 3.4 静态场的边值问题及解的惟一性定理静态场的边值问题及解的惟一性定理 3.5 镜像法镜像法 3.6 分离变量法分离变量法

2、静态电磁场:静态电磁场:场量不随时间变化,包括:场量不随时间变化,包括: 静电场、恒定电场和恒定磁场静电场、恒定电场和恒定磁场 时变情况下,电场和磁场相互关联,构成统一的电磁场时变情况下,电场和磁场相互关联,构成统一的电磁场 静态情况下,电场和磁场由各自的源激发,且相互独立静态情况下,电场和磁场由各自的源激发,且相互独立 第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版33.1 静电场分析静电场分析 学习内容学习内容 3.1.1 静电场的基本方程和边界条件静电场的基本方程和边界条

3、件 3.1.2 电位函数电位函数 3.1.3 导体系统的电容与部分电容导体系统的电容与部分电容 3.1.4 静电场的能量静电场的能量 3.1.5 静电力静电力第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版42. 边界条件边界条件0ED微分形式:微分形式:ED本构关系:本构关系:1. 基本方程基本方程0)()(21n21nEEDDeeS0ddlESDCSq积分形式:积分形式:0)(0)(2121EEeDDenn02t1tn2n1EEDDS或或2t1tn2n1EEDD或或3.1.1

4、 静电场的基本方程和边界条件静电场的基本方程和边界条件若分界面上不存在面电荷,即若分界面上不存在面电荷,即 ,则,则0S第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版5介质介质2 2介质介质1 121212E1Ene212n21n12n2t1n1t21/tantanDDEEEE 在静电平衡的情况下,导体内部的电场为在静电平衡的情况下,导体内部的电场为0,则导体表面的,则导体表面的边界条件为边界条件为 0nnEDeeS0tnEDS或或 场矢量的折射关系场矢量的折射关系 导体表面的

5、边界条件导体表面的边界条件第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版60E由由即即静电场可以用一个标量函数的梯度来表示,静电场可以用一个标量函数的梯度来表示,标量函数标量函数 称为静称为静电场的标量电位或简称电位。电场的标量电位或简称电位。1. 电位函数的定义电位函数的定义E3.1.2 电位函数电位函数第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版72. 电

6、位的表达式电位的表达式对于连续的体分布电荷,由对于连续的体分布电荷,由同理得,面电荷的电位:同理得,面电荷的电位: 1()( )d4VrrVCR故得故得点电荷的电位:点电荷的电位:( )4qrCR()1( )d4lCrrlCRd)1)(41d)1()(41d)(41)(3VRrVRrVRRrrEVVV3)1(RRR线电荷的电位:线电荷的电位:rrR( )1( )dS4SsrrCR第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版83. 电位差电位差两端点乘两端点乘 ,则有,则有ld

7、E将将d)ddd(ddyyyyxxllE上式两边从点上式两边从点P到点到点Q沿任意路径进行积分,得沿任意路径进行积分,得关于电位差的说明关于电位差的说明 P、Q 两点间的电位差等于电场力将单位正电荷从两点间的电位差等于电场力将单位正电荷从P点移至点移至Q 点点 所做的功,电场力使单位正电荷由高电位处移到低电位处。所做的功,电场力使单位正电荷由高电位处移到低电位处。 电位差也称为电压,可用电位差也称为电压,可用U 表示。表示。 电位差有确定值,只与首尾两点位置有关,与积分路径无关。电位差有确定值,只与首尾两点位置有关,与积分路径无关。)()(ddQPlEQPQPP、Q 两点间的电位差两点间的电位

8、差电场力做电场力做的功的功第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版9 静电位不惟一,可以相差一个常数,即静电位不惟一,可以相差一个常数,即)(CC选参考点选参考点令参考点电位为零令参考点电位为零电位确定值电位确定值( (电位差电位差) )两点间电位差有定值两点间电位差有定值 选择电位参考点的原则选择电位参考点的原则 应使电位表达式有意义。应使电位表达式有意义。 应使电位表达式最简单。若电荷分布在有限区域,通常取无应使电位表达式最简单。若电荷分布在有限区域,通常取无 限远作

9、电位参考点。限远作电位参考点。 同一个问题只能有一个参考点。同一个问题只能有一个参考点。4. 电位参考点电位参考点 为使空间各点电位具有确定值,可以选定空间某一点作为参考为使空间各点电位具有确定值,可以选定空间某一点作为参考点,且令参考点的电位为零,由于空间各点与参考点的电位差为确点,且令参考点的电位为零,由于空间各点与参考点的电位差为确定值,所以该点的电位也就具有确定值,即定值,所以该点的电位也就具有确定值,即第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版10 例例 3.1.

10、1 求电偶极子的电位求电偶极子的电位. . 解解 在球坐标系中在球坐标系中211202104)11(4)(rrrrqrrqrcos)2/(cos)2/(222221rddrrrddrrcos22drr用二项式展开,由于,得用二项式展开,由于,得dr ,cos21drr302020444cos)(rrrrqdrrpep代入上式,得代入上式,得 表示电偶极矩,方向由负电荷指向正电荷。表示电偶极矩,方向由负电荷指向正电荷。dqp+q电偶极子电偶极子zodq1r2rr),(rP第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像

11、出版社高等教育电子音像出版社 出版出版11ErErrdd21sinCr 将将 和和 代入上式,代入上式,解得解得E线方程为线方程为ErE 由球坐标系中的梯度公式,可得到电偶极子的远区电场强度由球坐标系中的梯度公式,可得到电偶极子的远区电场强度)sincos2(430eerrq)sin11()(rerererErcos2Cr Crp204cos等位线等位线电场线电场线电偶极子的场图电偶极子的场图电场线微分方程电场线微分方程:等位线方程等位线方程:第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版

12、社 出版出版12 解解 选定均匀电场空间中的一点选定均匀电场空间中的一点O为坐标原点,而任意点为坐标原点,而任意点P 的的位置矢量为位置矢量为r ,则,则000( )( )ddPPoOPOElErEr rrrrrr若选择点若选择点O为电位参考点,即为电位参考点,即 ,则,则( )0O0( )PEr rr000( )coszPErer EE r rrr r 在球坐标系中,取极轴与在球坐标系中,取极轴与 的方向的方向一致,即一致,即 ,则有,则有00zEe E0Ezree z000( )()cosxzPEreE ee zE rrrrr 在圆柱坐标系中,取在圆柱坐标系中,取 与与x 轴方向一致,即轴

13、方向一致,即 ,而,而 ,故,故 00 xEe E0E0ExzOPr 例例3.1.2 求均匀电场的电位分布。求均匀电场的电位分布。第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版13xyzL-L( , , ) z zddlzRz 解解 采用圆柱坐标系,令线电荷与采用圆柱坐标系,令线电荷与 z 轴相重合,中点位于坐轴相重合,中点位于坐标原点。由于轴对称性,电位与标原点。由于轴对称性,电位与 无关。无关。在带电线上位于在带电线上位于 处的线元处的线元 ,它,它到点到点 的距离的距离

14、,则则22()Rzzddlz( , , )Pz 02201()d4()LlLrzzz2200ln() 4LlLzzzz 220220()()ln4()()lzLzLzLzL 例例3.1.3 求长度为求长度为2L、电荷线密度为、电荷线密度为 的均匀带电线的电位。的均匀带电线的电位。0l第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版142222000220002( )lnlnln422lllLLLLLrLL 在上式中若令在上式中若令 ,则可得到无限长直线电荷的电位。当,则可得到无限

15、长直线电荷的电位。当 时,上式可写为时,上式可写为 LRL 当当 时,上式变为无穷大,这是因为电荷不是分布在有限区时,上式变为无穷大,这是因为电荷不是分布在有限区域内,而将电位参考点选在无穷远点之故。这时可在上式中加上域内,而将电位参考点选在无穷远点之故。这时可在上式中加上一个任意常数,则有一个任意常数,则有L 002( )ln2lLrC并选择有限远处为电位参考点。例如,选择并选择有限远处为电位参考点。例如,选择= a 的点为电位参的点为电位参考点,则有考点,则有002ln2lLCa 00( )ln2lar第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教

16、育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版15在均匀介质中,有在均匀介质中,有5. 电位的微分方程电位的微分方程在无源区域,在无源区域,0EED202标量泊松方程标量泊松方程拉普拉斯方程拉普拉斯方程第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版166. 静电位的边界条件静电位的边界条件 设设P1和和P2是介质分界面两侧紧贴界面的相邻两点,其电位分是介质分界面两侧紧贴界面的相邻两点,其电位分别为别为1和和2。当两点间距离当两点间距离l0时时 导体

17、表面上电位的边界条件:导体表面上电位的边界条件:0dlim21021PPlElSe)(21nDDD由由 和和12媒质媒质2媒质媒质121l2P1P 若介质分界面上无自由电荷,即若介质分界面上无自由电荷,即0Snn1122常数,常数,SnSnn112221第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版17 例例3.1.4 两块无限大接地导体平板分别置于两块无限大接地导体平板分别置于 x = 0 和和 x = a 处,处,在两板之间的在两板之间的 x = b 处有一面密度为处有一面

18、密度为 的均匀电荷分布,如图所的均匀电荷分布,如图所示。求两导体平板之间的电位和电场。示。求两导体平板之间的电位和电场。0S 解解 在两块无限大接地导体平板之间,除在两块无限大接地导体平板之间,除 x = b 处有均匀面电处有均匀面电荷分布外,其余空间均无电荷分布,故电位函数满足一维拉普拉荷分布外,其余空间均无电荷分布,故电位函数满足一维拉普拉斯方程斯方程212d( )0,(0)dxxbx222d( )0,()dxbxax111222( )( )xC xDxC xD方程的解为方程的解为obaxy两块无限大平行板两块无限大平行板0S1( )x2( ) x第3章 电磁场与电磁波电磁场与电磁波电子科

19、技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版180110(),0SbaCDa 002200,SSbbCDa 010020()( ),(0)( )(),()SSabxxxbabxaxbxaa 0110()( )( )SxabE xxea1221122021000SDC aDC bDC bDCC 利用边界条件,有利用边界条件,有xb12( )( ),bb0210( )( )Sx bxxxx 处,处,最后得最后得0 x 处,处,1(0)0 x a2( )0a 处,处,所以所以0220( )( )SxbE xxea由此解得由

20、此解得第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版19电容器广泛应用于电子设备的电路中:电容器广泛应用于电子设备的电路中: 在电子电路中,利用电容器来实现滤波、移相、隔直、旁在电子电路中,利用电容器来实现滤波、移相、隔直、旁 路、选频等作用。路、选频等作用。 通过电容、电感、电阻的排布,可组合成各种功能的复杂通过电容、电感、电阻的排布,可组合成各种功能的复杂 电路。电路。 在电力系统中,可利用电容器来改善系统的功率因数,以在电力系统中,可利用电容器来改善系统的功率因数,以 减

21、少电能的损失和提高电气设备的利用率。减少电能的损失和提高电气设备的利用率。 3.1.3 导体系统的电容与部分电容导体系统的电容与部分电容第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版20 电容是导体系统的一种基本属性,是描述导体系统电容是导体系统的一种基本属性,是描述导体系统 储存电荷储存电荷能力的物理量。能力的物理量。 孤立导体的电容定义为所带电量孤立导体的电容定义为所带电量q与其电位与其电位 的比值,即的比值,即qC 1. 电容电容 孤立导体的电容孤立导体的电容 两个带等量

22、异号电荷(两个带等量异号电荷( q)的导体组成的电容器,其电容为的导体组成的电容器,其电容为12qqCU 电容的大小只与导体系统的几何尺寸、形状和及周围电介质电容的大小只与导体系统的几何尺寸、形状和及周围电介质 的特性参数有关,而与导体的带电量和电位无关。的特性参数有关,而与导体的带电量和电位无关。第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版21 (1) 假定两导体上分别带电荷假定两导体上分别带电荷+q 和和q ; (2) 计算两导体间的电场强度计算两导体间的电场强度E; 计

23、算电容的步骤:计算电容的步骤:UqC (4) 求比值求比值 ,即得出所求电容。,即得出所求电容。21dlEU (3) 由由 ,求出两导体间的电位差;,求出两导体间的电位差;第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版22 解解:设内导体的设内导体的电荷为电荷为q ,则由高斯定理可求得内外导体间,则由高斯定理可求得内外导体间的电场的电场44rr22qqDe,Eerr0011d()44baqqbaUE rabab同心导体间的电压同心导体间的电压04abqCUba球形电容器的电容球

24、形电容器的电容04Ca当当 时,时,b 例例3.1.4 同心球形电容器的内导体半径为同心球形电容器的内导体半径为a 、外导体半径为、外导体半径为b,其间填充介电常数为其间填充介电常数为的均匀介质。的均匀介质。求此球形电容器的电容。求此球形电容器的电容。孤立导体球的电容孤立导体球的电容abo第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版23 例例 3.1.5 如图所示的平行双线传输线,导线半径为如图所示的平行双线传输线,导线半径为a ,两导线,两导线的轴线距离为的轴线距离为D ,

25、且,且D a ,求传输线单位长度的电容。,求传输线单位长度的电容。l 解解 设两导线单位长度带电量分别为设两导线单位长度带电量分别为 和和 。由于。由于 ,故可近似地认为电荷分别均匀分布在两故可近似地认为电荷分别均匀分布在两导线的表面上。应用高斯定理和叠加原导线的表面上。应用高斯定理和叠加原理,可得到两导线之间的平面上任一点理,可得到两导线之间的平面上任一点P 的电场强度为的电场强度为lDa011( )()2lxE xexDx两导线间的电位差两导线间的电位差210011d()dln2DallaDaUElxxDxa故单位长度的电容为故单位长度的电容为001(F/m)ln()ln()lCUDaaD

26、 axyzxDa第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版24 例例3.1.6 同轴线内导体半径为同轴线内导体半径为a ,外导体半径为,外导体半径为b ,内外导体,内外导体间填充的介电常数为间填充的介电常数为 的均匀介质,的均匀介质,求同轴线单位长度的电容。求同轴线单位长度的电容。( )2lEe内外导体间的电位差内外导体间的电位差1( )dd2bblaaUEell 解解 设同轴线的内、外导体单位长度带电量分别为设同轴线的内、外导体单位长度带电量分别为 和和 ,应用高斯定理可

27、得到内外导体间任一点的电场强度为应用高斯定理可得到内外导体间任一点的电场强度为故得同轴线单位长度的电容为故得同轴线单位长度的电容为12(F/m)ln( / )lCUb aab同轴线同轴线ln( / )2lb a第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版25 如果充电过程进行得足够缓慢,就不会有能量辐射,充电过如果充电过程进行得足够缓慢,就不会有能量辐射,充电过程中外加电源所做的总功将全部转换成电场能量,或者说电场能程中外加电源所做的总功将全部转换成电场能量,或者说电场能量就

28、等于外加电源在此电场建立过程中所做的总功。量就等于外加电源在此电场建立过程中所做的总功。静电场能量来源于建立电荷系统的过程中外源提供的能量。静电场能量来源于建立电荷系统的过程中外源提供的能量。静电场最基本的特征是对电荷有作用力,这表明静电场具有静电场最基本的特征是对电荷有作用力,这表明静电场具有 能量。能量。 任何形式的带电系统,都要经过从没有电荷分布到某个最终任何形式的带电系统,都要经过从没有电荷分布到某个最终电荷分布的建立电荷分布的建立(或充电或充电)过程。在此过程中,外加电源必须克服过程。在此过程中,外加电源必须克服电荷之间的相互作用力而做功。电荷之间的相互作用力而做功。3.1.4 静电

29、场的能量静电场的能量 第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版261. 静电场的能量静电场的能量 设系统从零开始充电,最终带电量为设系统从零开始充电,最终带电量为 q 、电位为、电位为 。 充电过程中某一时刻的电荷量为充电过程中某一时刻的电荷量为q 、电位为、电位为 。(01) 当当增加为增加为(+ d)时,外电源做功为时,外电源做功为: (q d)。 对对从从0 到到 1 积分,即得到外电源所做的总功为积分,即得到外电源所做的总功为101d2qq 根据能量守恒定律,此功

30、也就是电量为根据能量守恒定律,此功也就是电量为 q 的带电体具有的电的带电体具有的电场能量场能量We ,即,即 对于电荷体密度为对于电荷体密度为的体分布电荷,体积元的体分布电荷,体积元dV中的电荷中的电荷dV具具有的电场能量为有的电场能量为qW21eVWd21de第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版27故体分布电荷的电场能量为故体分布电荷的电场能量为对于面分布电荷,对于面分布电荷,电场能量为电场能量为对于多导体组成的带电系统,则有对于多导体组成的带电系统,则有iq 第

31、第i 个导体所带的电荷个导体所带的电荷i 第第i 个导体的电位个导体的电位式中:式中: iiiiSSiiSiSqSSWiiii21d21d21eVVWd21eSSSWd21e第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版282. 电场能量密度电场能量密度 从场的观点来看,静电场的能量分布于电场所在的整个空间。从场的观点来看,静电场的能量分布于电场所在的整个空间。EDw21e电场能量密度:电场能量密度:e1d2VWD E V电场的总能量:电场的总能量:积分区域为电场积分区域为电场

32、所在的整个空间所在的整个空间2e111ddd222VVVWD E VE E VEV 对于线性、各向同性介质,则有对于线性、各向同性介质,则有2e111222wD EE EE 第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版29由于体积由于体积V外的电荷密度外的电荷密度0,若将上,若将上式中的积分区域扩大到整个场空间,结式中的积分区域扩大到整个场空间,结果仍然成立。只要电荷分布在有限区域果仍然成立。只要电荷分布在有限区域内,当闭合面内,当闭合面S 无限扩大时,则有无限扩大时,则有2

33、11 O( O()DRR)、2111d O(.d ) O()0SSDSSRRR故故11dd22SVDSE D V 推证推证:()DDD ()ddVSD VDSE D R0Se11dd22VVWVDV1()d2VDDV第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版30 例例3.1.7 半径为半径为a 的球形空间内均匀分布有电荷体密度为的球形空间内均匀分布有电荷体密度为的电的电荷,试求静电场能量。荷,试求静电场能量。5202420622020220154)d49d49(21arrr

34、arrraa10()3rrEera 解解: 方法一方法一,利用利用 计算计算 VVEDWd21e 根据高斯定理求得电场强度根据高斯定理求得电场强度 3220()3raEerar故故VEVEVEDWVVVd21d21d2121220210e第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版31)()3(2d3d3dd2202030211arrarrarrrErEaraara 方法二方法二:利用利用 计算计算 VVWd21e 先求出电位分布先求出电位分布 故故5202022021e15

35、4d4)3(221d21arrraVWaV第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版323.2 导电媒质中的恒定电场分析导电媒质中的恒定电场分析 3.2.1 恒定电场的基本方程和边界条件恒定电场的基本方程和边界条件 3.2.2 恒定电场与静电场的比拟恒定电场与静电场的比拟 3.2.3 漏电导漏电导第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版33 由由J J

36、 E E 可知,导体中若存在恒定电流,则必有维持该电流可知,导体中若存在恒定电流,则必有维持该电流的电场,虽然导体中产生电场的电荷作定向运动,但导体中的电的电场,虽然导体中产生电场的电荷作定向运动,但导体中的电荷分布是一种不随时间变化的恒定分布,这种恒定分布电荷产生荷分布是一种不随时间变化的恒定分布,这种恒定分布电荷产生的电场称为恒定电场。的电场称为恒定电场。 恒定电场与静电场的重要区别:恒定电场与静电场的重要区别: (1 1)恒定电场可以存在于导体内部。)恒定电场可以存在于导体内部。 (2 2)恒定电场中有电场能量的损耗)恒定电场中有电场能量的损耗, ,要维持导体中的恒定电要维持导体中的恒定

37、电流,就必须有外加电源来不断补充被损耗的电场能量。流,就必须有外加电源来不断补充被损耗的电场能量。 恒定电场和静电场都是有源无旋场,具有相同的性质。恒定电场和静电场都是有源无旋场,具有相同的性质。 3.2.1 恒定电场的基本方程和边界条件恒定电场的基本方程和边界条件第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版34EJ0d0dlESJCS00EJ1. 1. 基本方程基本方程 恒定电场的基本方程为恒定电场的基本方程为微分形式:微分形式:积分形式:积分形式:)(rJ 恒定电场的基本

38、场矢量是电流密度恒定电场的基本场矢量是电流密度 和电场强度和电场强度)(rE 线性各向同性导电媒质的本构关系线性各向同性导电媒质的本构关系0)(EEJ 恒定电场的电位函数恒定电场的电位函数0E0 EE0 J由由0)(02若媒质是均匀的,则若媒质是均匀的,则 均匀导电媒质中均匀导电媒质中没有体分布电荷没有体分布电荷第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版352. 恒定电场的边界条件恒定电场的边界条件0dlEC0dSJS媒质媒质2 2媒质媒质1 121212E1Ene0)(2

39、1nJJe0)(21nEEe 场矢量的边界条件场矢量的边界条件2nn1JJ即即2t1tEE即即 导电媒质分界面上的电荷面密度导电媒质分界面上的电荷面密度n2211222111n21n)()()(JeeSJJDD场矢量的折射关系场矢量的折射关系212n21n12n2t1n1t21/tantanJJEEEE第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版36 电位的边界条件电位的边界条件nn221121, 恒定电场同时存在于导体内部和外部,在导体表面上的电场恒定电场同时存在于导体内部

40、和外部,在导体表面上的电场 既有法向分量又有切向分量,电场并不垂直于导体表面,既有法向分量又有切向分量,电场并不垂直于导体表面,因因 而导体表面不是等位面;而导体表面不是等位面;ab11、 说明:说明:第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版37媒质媒质2 2媒质媒质1 12122E1E)(12媒质媒质2 2媒质媒质1 12012Ene1E)0(1 如如2 1、且、且 290,则则 10, 即电场线近似垂直于与良导体表面。即电场线近似垂直于与良导体表面。 此时,良导体表面

41、可近似地看作为此时,良导体表面可近似地看作为 等位面;等位面; 若媒质若媒质1为理想介质为理想介质,即即 10,则则 J1=0,故故J2n= 0 且且 E2n= 0,即导体,即导体 中的电流和电场与分界面平行中的电流和电场与分界面平行。第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版383.2.2 恒定电场与静电场的比拟恒定电场与静电场的比拟 如果两种场,在一定条件下,场方程有相同的形式,边界如果两种场,在一定条件下,场方程有相同的形式,边界形状相同,边界条件等效,则其解也必有相

42、同的形式,求解这形状相同,边界条件等效,则其解也必有相同的形式,求解这两种场分布必然是同一个数学问题。只需求出一种场的解,就两种场分布必然是同一个数学问题。只需求出一种场的解,就可以用对应的物理量作替换而得到另一种场的解。这种求解场可以用对应的物理量作替换而得到另一种场的解。这种求解场的方法称为比拟法。的方法称为比拟法。第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版39恒定电场与静电场的比拟恒定电场与静电场的比拟基本方程基本方程ED,EEJ0202n2n1t2t1 DDEEn2

43、n1t2t1 JJEE静电场(静电场( 区域)区域) 00d, 0dlESJCS0, 0EJ,E0,0DEnn221121 ,nn221121 ,本构关系本构关系位函数位函数边界条件边界条件恒定电场(电源外)恒定电场(电源外)对应物理量对应物理量静电场静电场EEDJqI恒定电场恒定电场GC0d, 0dlESDCS第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版40 例例3.2.1一个有两层介质的平行板电容器,其参数分别为一个有两层介质的平行板电容器,其参数分别为 1、 1 和和

44、2、 2 ,外加电压,外加电压U。求介质面上的自由电荷密度。求介质面上的自由电荷密度。 解解:极板是理想导体,:极板是理想导体,为等位面,电流沿为等位面,电流沿z 方向。方向。1n2nJJ 由由1n2nSDD由由U1d2d11, 22, zo12121 12212()ddUUUEdE dJ12121122,JJJJEE12JJJ1212()ddJU121212,SSDJDJ上下21122 121212112()SDDJUdd 介第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版41

45、 例例3.2.2 填充有两层介质的同轴电缆,内导体半径为填充有两层介质的同轴电缆,内导体半径为a,外导,外导体半径为体半径为c,介质的分界面半径为,介质的分界面半径为b。两层介质的介电常数为。两层介质的介电常数为 1 和和 2 、电导率为、电导率为 1 和和 2 。设内导体的电压为。设内导体的电压为U0 ,外导体接地。求:,外导体接地。求:(1)两导体之间的电流密度和电场强度分布;()两导体之间的电流密度和电场强度分布;(2)介质分界面)介质分界面上的自由电荷面密度。上的自由电荷面密度。J1212I外导体外导体内导体内导体介质介质2 2介质介质1abc11、22、0U第3章 电磁场与电磁波电磁

46、场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版42 (1)设同轴电缆中单位长度的径向电流为)设同轴电缆中单位长度的径向电流为I ,则由则由 可得电流密度可得电流密度Sd,JSI()2IJeac111()2JIEeab 介质中的电场介质中的电场222()2JIEebc 解解 电流由内导体流向外导体,在分界面上只有法向分量,电流由内导体流向外导体,在分界面上只有法向分量,所以电流密度成轴对称分布。可先假设电流为所以电流密度成轴对称分布。可先假设电流为I,由求出电流密度由求出电流密度 的表达式,然后求出的表达

47、式,然后求出 和和 ,再由,再由 确确定出电流定出电流 I。J012ddbcabUEE1E2E第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版4312021()ln()ln()UJeacb ac b 20121()ln()ln()UEeabb ac b 10221()ln()ln()UEebcb ac b 故两种介质中的电流密度和电场强度分别为故两种介质中的电流密度和电场强度分别为120212ln()ln()UIb ac b 01212ddln( )ln( )22bcabIbIc

48、UEEab由于由于于是得到于是得到第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版4412011121ln()ln()SaUeEab ac b 21022221ln()ln()ScUeEcb ac b 1211221221021()()ln()ln()SbeEeEUbb ac b nSeD (2)由)由 可得,介质可得,介质1内表面的电荷面密度为内表面的电荷面密度为介质介质2外表面的电荷面密度为外表面的电荷面密度为两种介质分界面上的电荷面密度为两种介质分界面上的电荷面密度为J21

49、12I第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版45 工程上,常在电容器两极板之间、同轴电缆的芯线与外壳之工程上,常在电容器两极板之间、同轴电缆的芯线与外壳之间,填充不导电的材料作电绝缘。这些绝缘材料的电导率远远小间,填充不导电的材料作电绝缘。这些绝缘材料的电导率远远小于金属材料的电导率,但毕竟不为零,因而当在电极间加上电压于金属材料的电导率,但毕竟不为零,因而当在电极间加上电压U 时,必定会有微小的漏电流时,必定会有微小的漏电流 J 存在。存在。 漏电流与电压之比为漏电导

50、,即漏电流与电压之比为漏电导,即UIG 其倒数称为绝缘电阻,即其倒数称为绝缘电阻,即IUGR13.2.3 漏电导漏电导第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版46(1) 假定两电极间的电流为假定两电极间的电流为I ; 计算两电极间的电流密度计算两电极间的电流密度 矢量矢量J ; 由由J = E 得到得到 E ; 由由 ,求出两导,求出两导 体间的电位差;体间的电位差; (5) 求比值求比值 ,即得,即得出出(2) 所求电导。所求电导。21dlEUUIG/ 计算电导的方法一

51、计算电导的方法一: 计算电导的方法二计算电导的方法二: (1) 假定两电极间的电位差为假定两电极间的电位差为U; (2) 计算两电极间的电位分布计算两电极间的电位分布 ; (3) 由由 得到得到E ; (4) 由由 J = E 得到得到J ; (5) 由由 ,求出两导体间,求出两导体间 电流;电流; (6) 求比值求比值 ,即得出所,即得出所 求电导。求电导。ESISJdUIG/ 计算电导的方法三计算电导的方法三:静电比拟法:静电比拟法:CG第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社

52、 出版出版47 例例3.2.3 求同轴电缆的绝缘电阻。设内外的半径分别为求同轴电缆的绝缘电阻。设内外的半径分别为a 、b,长度为长度为l ,其间媒质的电导率为,其间媒质的电导率为、介电常数为、介电常数为。解解:直接用恒定电场的计算方法直接用恒定电场的计算方法电导电导)/ln(2ablUIG绝缘电阻绝缘电阻ablGRln211baablIlIUln2d2dlElba则则IlIJ2lIJE2设由内导体流向外导体的电流为设由内导体流向外导体的电流为I 。第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像

53、出版社 出版出版48012222000, 0U 方程通解为方程通解为21CC 例例3.2.4 在一块厚度为在一块厚度为h 的导电板上,的导电板上, 由两个半径为由两个半径为r1 和和 r2 的圆弧和夹角为的圆弧和夹角为 0 的两半径割出的一段环形导电媒质,如图所的两半径割出的一段环形导电媒质,如图所示。计算沿示。计算沿 方向的两电极之间的电阻。设导电媒质的电导率为方向的两电极之间的电阻。设导电媒质的电导率为。 解:解: 设在沿设在沿 方向的两电极之间外加电压方向的两电极之间外加电压U0,则电流沿则电流沿 方向流动,而且电流密度是随方向流动,而且电流密度是随 变化的。但容易变化的。但容易判定电位

54、判定电位 只是只是变量变量 的函数,因此电位函数的函数,因此电位函数 满足一维满足一维拉普拉斯方程拉普拉斯方程代入边界条件代入边界条件可以得到可以得到10020/,CUCU环形导电媒质块环形导电媒质块r1hr2 0J第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版49电流密度电流密度00UJEe两电极之间的两电极之间的电流电流21002001ddlnrSrUU hrIJSee hr故故沿沿 方向的两电极之间的电阻方向的两电极之间的电阻为为0021( )ln(/ )URIhrr00

55、0UU所以所以00UEee 第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版503.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位3.3.3 电感电感3.3.4 恒定磁场的能量恒定磁场的能量3.3.5 磁场力磁场力 3.3 恒定磁场分析恒定磁场分析第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出

56、版社 出版出版510HJB微分形式微分形式: :0dddSSCSBSJlH1. 基本方程基本方程BH2. 边界条件边界条件本构关系:本构关系:SJHHeBBe)(0)(21n21nSJHHBBt2t12n1n0或或若分界面上不存在面电流,即若分界面上不存在面电流,即JS0,则,则积分形式积分形式: :0)(0)(21n21nHHeBBe或或002tt1n2n1HHBB3.3.1 恒定磁场的基本方程和边界条件恒定磁场的基本方程和边界条件第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出

57、版52 矢量磁位的定义矢量磁位的定义 磁矢位的任意性磁矢位的任意性 与电位一样,磁矢位也不是惟一确定的,它加上任意一个标与电位一样,磁矢位也不是惟一确定的,它加上任意一个标量量 的梯度以后,仍然表示同一个磁场,即的梯度以后,仍然表示同一个磁场,即由由AA 0BBA 即恒定磁场可以用一个矢量函数的旋度来表示。即恒定磁场可以用一个矢量函数的旋度来表示。 磁矢位的任意性是因为只规定了它的旋度,没有规定其散度磁矢位的任意性是因为只规定了它的旋度,没有规定其散度造成的。为了得到确定的造成的。为了得到确定的A,可以对,可以对A的散度加以限制,在恒定磁的散度加以限制,在恒定磁场中通常规定,并称为库仑规范。场

58、中通常规定,并称为库仑规范。0A()AAA 1. 恒定磁场的矢量磁位恒定磁场的矢量磁位矢量磁位或称磁矢位矢量磁位或称磁矢位 3.3.2 恒定磁场的矢量磁位和标量磁位恒定磁场的矢量磁位和标量磁位第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版53 磁矢位的微分方程磁矢位的微分方程在无源区:在无源区:ABHJ0A 0J JA202 A矢量泊松方程矢量泊松方程矢量拉普拉斯方程矢量拉普拉斯方程AJ2()AAJ 磁矢位的表达式磁矢位的表达式3( )1( )d( )()d44VVJ rRB

59、rVJ rVRR 1( )()d4VJ rVR ()111()()()()()()J rJ rJ rJ rRRRR 31()RRR 第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版54 磁矢位的边界条件磁矢位的边界条件(可以证明满足(可以证明满足 ) 0A对于面电流和细导线电流回路,磁矢位分别为对于面电流和细导线电流回路,磁矢位分别为 利用磁矢位计算磁通量:利用磁矢位计算磁通量:0A 12AA12()nSeHHJ/HA121211()nSeAAJ细线电流细线电流:CRlIrAd4

60、)(面电流面电流:SSSRrJrAd)(4)(由此可得出由此可得出VVRrJrAd)(4)(SCSBlAddCSSlASASBddd0dSSA2t1tAA 2n1nAA第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等教育出版社高等教育出版社 & 高等教育电子音像出版社高等教育电子音像出版社 出版出版55 例例 3.3.1 求小圆环电流回路的远区矢量磁位与磁场。小圆形回求小圆环电流回路的远区矢量磁位与磁场。小圆形回路的半径为路的半径为a ,回路中的电流为,回路中的电流为I 。 解解 如图所示,由于具有轴对称性,如图所示,由于具有轴对称性,矢量磁位和磁场均矢量磁位和磁场均与与 无关,计算无关,计算 xO z 平平面上的矢量磁位与磁场面上的矢量磁位与磁场将不失一般性。将不失一般性。(sincos )rxzre rr ee(cossin)rxzre aa eedd(sincos) dxyle aeea 222221 2( sincos)sincos)rrraar221 22sincosraar小圆环电流小圆环电流aIxzyrRdlrIPO第3章 电磁场与电磁波电磁场与电磁波电子科技大学电子科技大学编写编写高等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论