数学必修三统计和概率知识点总结_第1页
数学必修三统计和概率知识点总结_第2页
数学必修三统计和概率知识点总结_第3页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学必修三统计和概率知识点总结数学必修三统计和概率知识点总结 一.随机事件的概率及概率的意义 1、基本概念: (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件; (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件; (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率

2、fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。 (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 二.概率的基本性质 1、基本概念: (1)事件的包含、并事件、交事件、相等事件 (2)若AB为不可能事件,即AB=,那么称事件A与事件B互斥; (3)若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对

3、立事件; (4)当事件A与B互斥时,满足加法公式:P(AB)=P(A)+P(B);若事件A与B为对立事件,则AB为必然事件,所以 P(AB)=P(A)+P(B)=1,于是有P(A)=1P(B) 2、概率的基本性质: 1)必然事件概率为1,不可能事件概率为0,因此0P(A)1; 2)当事件A与B互斥时,满足加法公式:P(AB)=P(A)+P(B); 3)若事件A与B为对立事件,则AB为必然事件,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1P(B); 4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事

4、件B不发生; (2)事件A不发生且事件B发生; (3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形; (1)事件A发生B不发生; (2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。三.古典概型及随机数的产生 (1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。 (2)古典概型的解题步骤;求出总的基本事件数; 求出事件A所包含的基本事件数,然后利用公式P(A)= 四.几何概型及均匀随机数的产生 基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几

5、何概型的概率公式:P(A)=; (3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个; 2)每个基本事件出现的可能性相等 数学基本函数的概念及性质知识点 1.函数y=-8x是一次函数。 2.函数y=4x+1是正比例函数。 3.函数是反比例函数。 4.抛物线y=-3(x-2)2-5的开口向下。 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线的顶点坐标是(1,2)。 7.反比例函数的图象在第一、三象限。 数学直线和圆知识点 1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式(为直线的方向向量).应用直线方程的点斜式、斜截式设

6、直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况? 2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为. (2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点. (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合. 3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交

7、两直线所成的较小角,范围是。而其到角是带有方向的角,范围是 4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解. 5.圆的方程:最简方程 ;标准方程 ; 6.解决直线与圆的关系问题有“函数方程思想和“数形结合思想两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用! (1)过圆 上一点 圆的切线方程 过圆 上一点 圆的切线方程 过圆 上一点 圆的切线方程 如果点在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦方程. 如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论