



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人脸识别论文:基于局部二值模式的人脸识别算法研究【中文摘要】随着计算机视觉和模式识别技术的飞速发展,各种基于生物特征的识别方法应用而生,在日常生活和各种场所中发挥着巨大的作用。在众多基于生物特征的识别方法中,自动人脸识别技术因其独特性,表现出越来越重要的研究价值和广阔的应用前景。人脸识别技术是典型的图像模式分析、理解与分类计算问题,经过近几十年的快速发展取得了巨大的进步,在接近理想的条件下,人脸识别系统可以完成一定的工作。特征提取作为人脸识别的关键,也成为重点研究内容及主要挑战。近年来,研究者将局部二值模式(LBP方法引入到人脸特征提取中来,取得了很大的成功。但是,LBP算子本身并不完善,特别
2、是在训练样本的维数高达几千甚至上万维的时候,其性能会急剧下降。本文对人脸识别算法中的LBP方法进行了深入研究及改进,并详细讨论了人脸识别门禁系统在军队重要场所中应用的可行性。主要研究工作可概括如下:1.本文通过对LBP基本原理的研究,分析了LBP原始算子的不足之处,由此提出了基于LBP的改进方法。先计算LBP图像,然后对其进行分块,将分块后的LBP直方图串联起来形成一个高维的直方图特征矢量,接着利用经典的PCA方法降维,最后选择分类器进行分类识别。该方法针对不同的图像进行不同的分块,使得维数的约简更加灵活方便,提高了特征提取的准确性。2.本文讨论了使用3种LBP算子对图像进行处理的情况,并将L
3、BP图像进行多种分块后在3种人脸库中进行实验,在大量的实验数据支持下,比较各种方法和各个步骤对最终识别性能的影响。3.本文对人脸识别的门禁系统在军队内部重点场所中的应用进行了展望,对基层部队门禁管理系统的构成、功能等提出了自己的看法,对部队的正规化、现代化建设起了一定的推动作用。本文对LBP算子及其在人脸识别中的应用、LBP 的降维方式、LBP的分块、PCA的降维等方面作了较深入的研究工作,并将此种方法引入到军事场所的使用上,对于推动自动人脸识别的进一步发展和应用具有积极的意义。【英文摘要】Along with the rapid development of computer vision
4、and pattern recognition technology, many recognition methods based on the biometrics have been developed. They play important roles in our real life and other fields. Automatic Face Recognition (AFR holds an important position in various biometrics techniques for its superiority, which has important
5、 theoretical research value and broad application prospects. Face recognition is a typical problem in image pattern analysis, understanding and classification compute area. In the past four decades, great achievement has been made in AFR. In close to ideal condition, face recognition system can acco
6、mplish certain work. Feature extraction is the crux of face recognition problem, which is one of the most important and challenging aspect of the study. Recently, the LBP has been successfully applied to face recognition as texture descriptorand excellent result has achieved. However, there are stil
7、l many limitations in the basic LBP operator and the LBP-based face recognition algorithm, when the dimension of samples exceeds thousands even reaches ten thousand. In this paper, the LBP features space is studied and analyzed from the texture features of images, and discuss the application possibi
8、lity of the access control system which based on face recognition in the armys important places. The main works are as follows:1. We proposed an improved algorithm after studying and analyzing the basic principle of LBP and the deficiency of original LBP operator. First LBP image has been computed a
9、nd divided into blocks. After this, the LBP histograms have been built up into a high dimension eigenvectors, then the classical PC A has been used to reduce the dimensions, finally classifier has been adopted for classification and recognition. This algorithm divides different images in different m
10、anner, so it makes dimension reduction more flexible and improves the accuracy of feature extraction.2. In this paper, we discuss three kinds of LBP operators and adopt many partition methods for LBP images, then experiment with images from three different face databases. Supported by a large number
11、 of experimental data, we compare the impact of various methods and steps on the final recognitionperformance.3. This paper discuss the application of access control system based on face recognition in the important places in the army, and provide suggestions on the structures, functions and realiza
12、tion methods of the access control systemin basic unit army, which plays an important role on normalization and modernization construction of thetroops.This paper research on LBP operator and its applicationin face recognition, LBP dimension reduction, LBP block and PCA dimension reduction deeply. The method is introduced in the army, which is valuable for further development of automatic face recognition.【关键词】人脸识别主元分析局部二值模式特征提取分类器【英文关键词】Face Recognition Principal Component Analysis Local Binary Pattern Feature Extract Classifier【目录】基于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育行业假期旅游证明(6篇)
- 现代汽车技术与维修实践题集
- 水利水电工程考试全景预测与试题及答案
- 社会化媒体与公共关系的融合试题及答案
- 经济法概论新颖试题及答案分享
- 2025年市政工程职业规划与试题答案
- 行政管理与公关理论的结合试题及答案
- 美术课件简笔画
- 2025年工程项目管理复习的窍门及试题及答案
- 工程项目管理过程创新试题及答案
- 船舶维修合同协议书
- 《比亚迪品牌历史课件》课件
- 2025年4月自考00160审计学答案含评分参考
- 购买木地板合同协议
- 严重开放性肢体创伤早期救治专家共识解读
- 速卖通开店考试最权威答案
- 输液导管相关静脉血栓形成中国专家共识 课件
- 国企岗位笔试题目及答案
- 2024年泉州实验中学初一新生入学考试数学试卷
- SWAT培训课件教学课件
- 电缆隧道施工组织设计
评论
0/150
提交评论