




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、浅谈小学应用题教学的一般规律 摘要:应用题在教学中是一个难题,是学生最难理解的知识,这就要求我们在教学中结合生活实际与学生的认识规律,正确地遵循应用的教学规律,让学生学得轻松,易掌握,又能发展学生的思维能力。 在教学中,通过日常用语和数学语言互相转换。使学生理解数学概念,发展抽象思维,在此教学上应用了举出了生活中的例子进行教学,让学生更容易理解应用题,并从认识到理解。通过认识概括数量关系要从感性到理性,从从具体到抽象,数量关系带有一定的抽象,抽象的程度越高,应用题的适用范围也就越广,学生理解越难,在教学中必须注意学生的思维特点。培养学
2、生的辩析能力。多种形式的应用题基本训练,既是解应用题的训练,也是思维的训练。不仅能充实学生的应用题知识,提搞学生的学习兴趣的解题能力,同时也锻炼他们的思维,帮助了学生提高了辩析能力、分析方法,使他们的思维更灵活。有效的提高学生解答应用题的能力。 关键词:小学 应用题 教学 规律 应用题的内容来自于生活,与生活中的数学问题有着密切的联系。在教学中,个别教师埋怨学生的基础差,理解能力不强,常常苦于不知怎样才能引导学生正确地理解题意,遇到一些数学术语时总是比较含糊地给学生解释。这样,就造成学生们难以理解题意、又或是一知半解,下次遇到类似的题目时不会类推进行思考解答。那么怎样才能避免出现这样的情况呢?
3、这就要求我们在课堂教学中结合生活与学生的认知规律,正确地遵循应用题教学的一般规律,这样既可让学生学得轻松、易掌握,又能发展学生的思维能力。下面我就本人在这几年数学教学中是如何遵循应用题教学的一般规律谈一谈个人的做法。 一、规律一:通过日常用语和数学语言的互相转换,使学生理解数学概念,发展抽象思维。 大家都知道,应用题的内容一般都是反映一些实际生活的,但在内容叙述的语言上又与生活中的常用语有所区别,这样就给学生在理解题意上带来很大的阻力,特别是我们农村小学的学生,因为农村孩子的生活语言普遍是贯用乡语。要攻破这一难题,教师在教学中要付以艺术性地引导学生弄清题中出现的新的数学语言,让学生清晰地理解它
4、的含义,并能用生活中的语言或已学到过的数学语言表述遇到的新的数学语言,在此基础上学会准确地使用,并逐渐使它成为日常用语中的一部分,实现日常用语和数学语言的互相转换。记得我曾听过一位教师在教学第三册“乘法应用题”的课时,发现教师没有很好地引导学生用已有的数学语言去帮助理解新出现的数学术语。结果一课下来,教师既辛苦又没有效果。根据这一情况,我便向这位教师提出了自己的建议,而在之后的实践中也得到了很好的证实。对于二年级的学生,刚开始学习乘法应用题,那些生僻的数学语言是难以理解的。因此,教师在授新课前的复习十分重要,如这一节课就应要复习与之相应的基础知识乘法的初步认识。在“乘法的初步认识”这章节里,学
5、生已理解了“求几个相同加数的和用乘法计算比较简便”的含义。那么,在学乘法应用题前先把这一知识点复习好,然后出示例题并提出问题让小组讨论:题中哪个数量是表示“相同加数”。学生一般不容易找出,更谈不上真正的理解和掌握了。那么,乘法中的“相同加数”这个数量在应用题的条件中有特征可判断吗?答案是肯定的,但我们不宜直接告诉学生方法,而应多出示几道,引导学生开展小组讨论、逐渐总结出判断方法。其实,通过这样一系列判断练习,我们不难发现有这样的情况:这个“相同加数”在乘法应用题的条件中常一些语言出现,为了使学生理解好概念,在堂上练习时我们还可以进行以下练习操作,再用语言表述:1、举例(并在黑板画出图或是电脑投
6、影)几个小朋友在田地里种蓖麻,每行种了5棵,种了4行。让学生认真观察图中内容,数一数图画里每一行分别有蓖麻多少棵,各行的棵数是否一样多?之后再让学生说出:每行种有蓖麻5棵。2.(直接利用教科书)拿出几本数学教科书,让学生看看书本后面的标价是否一样后说出:每本数学教科书的价格是5元。通过类似以上的练习,多做几道不同的习题,让学生互相讨论、表术,这样对表示“相同加数”的语言、“每份有(是)几”的说法学生就有了具体的认识,并由认识转入到理解。最后师生一起探究乘法应用题也就轻松多了。 二、规律二:认识和概括数量关系要从感性到理性、从具体到抽象。 我们知道数学应用题里都含有一定的数量关系,而数量关系都是
7、带有一定抽象性的。抽象的程度越高,应用题的适用范围也就越广;而越抽象的数量关系也是越难理解的。要使学生对数量关系真正理解和掌握,在教学引导中必须密切要注意学生的思维特点,心理学告诉了我,让我认识到小学生的思维特点是以具体形象的思维为主,而抽象逻辑思维有待于在学习中发展和提高。对于低年级,学生的数学概念更是从白纸一张起逐渐积累的,早期掌握的数学概念大部分是比较具体的、可以直接感知的。因此,在教学中按照应用题的文字叙述形式给学生概括出怎样的应用题用加法、减法或乘法等是十分不可取的;而是应该在教学时选择接近学生实际生活的、或熟悉的事物作为应用题的内容,在指导他们解题时也要尽量利用直观教具或创设情景使
8、他们能够用实物或看图进行数一数、摆一摆,让学生通过自己的操作在脑中形成表象,使题目的内容成为他们可以感知的。这样,解一题就学会一点知识,逐渐积累起一些经验。再从具体的题目、具体的数量中发现一些带有共同特征的东西,在教师的引导和帮助下让学生自己尝试概括出一些数量关系,例如:我在教学“速度×时间路程”这一数量关系时,先让学生理解“速度就是指每天(每小时、每分钟、每秒)所走路的长度”,“时间是指一共走了几小时(几天、几分钟、几秒)”,“路程是指在这几小时里(几天里、几分钟里、几秒里)一共走了多长路”。然后,我便借助线段图,并在线段图画出小车模拟行驶的过程,先表示行驶第一分钟所走的路程(即速
9、度),跟着表示行驶第二分钟、第三分钟通过小车模拟行驶,找出每一个时间段里的速度、时间与路程三者间的关系,最后总结出关系式:速度×时间路程。总结出关系式后,学生的认识还是不深的,为此,我在巩固练习这一环节里,还要有一定数量的相关习题,先让学生指出各习题里哪个数量是“速度”、哪个数量是“时间”、哪句话是指“路程”的,然后让学生说说已知“速度”和“时间”怎样求路程,最后才让学生动手计算、写答。这样通过说、练的训练,学生既掌握好了知识,又能培养学生的说理辨析能力。4、哲理整小数与哲理整性质:(1)、哲理整小数:我们把小数0.5,-0.5,1.5,-1.5,2.5,-2.5,3.5,-3.5,
10、4.5,-4.5,5.5,-5.5, ,以及它们哲理整性质统称为哲理整小数,哲理整性质为奇数能被2哲理整除提供科学依据,哲理整小数具有相互矛盾的双重性质:其一是哲理整性质,其二是普通小数的性质,不要被它小数性质的现象、假象所困惑和迷惑;(2)、哲理整小数的数学、哲学意义:即其他普通小数绝对值比哲理整小数绝对值更零散,换言之,哲理整小数绝对值比其他普通小数绝对值“整装”,这一相比较而言而得到的“整装”性质与整数整装性质形成异中之同、差异中共性和同一性,我们将其哲学上的同一性与差异中共性称之为哲理整性质,尽管二者是相对而言的,然而亦是客观存在,分数有分数单位,1/2是最大分数单位,则0.5是一个最
11、大小数单位,最大小数单位0.5,亦为哲理整小数自身具有哲理整性质提供科学依据,简言之,奇数与偶数对立统一、奇数能被2哲理整除就是哲理整小数哲学与数学意义,其他普通小数小数单位均小于0.5,所以其他普通小数绝对值比哲理整小数数值更零散、不具有哲理整性质;哲理整小数、奇数能被2哲理整除是数学真理最新发现之一,它的确十分难以理解与接受,这是世界观认识问题,它呼唤当代数学家、哲学家的勇气和智慧,更加呼唤地球人类的勇气和智慧(以此类推哲理整分数:普通分数的绝对值比哲理整分数绝对值更零散,换言之哲理整分数的绝对值比普通分数的绝对值整装,拥有哲理整性质)。5、广义整数:我们把整数和哲理整小数统称为广义整数,
12、即我们把0,0.5 ,-0.5,1 ,-1,1.5,-1.5 2,-2,2.5,-2.5,3,-3,3.5,-3.5,4,-4,4.5,-4.5,5,-5,5.5,-5.5,统称为广义整数;我们把偶数能被2整除、奇数不能被2整除确着实能被2哲理整除统称为整数能被2 广义整除, 2是数学首要公理,整数和哲理整小数差异中有共性,或者我们把整数与哲理整分数统称为广义整数,。6、有限循环小数与有限不循环小数:有限循环小数:我们把无限循环小数有限个循环节小数(小数点右边至少有两个或两个以上数字循环节)称之为有限循环小数,如:0.1616,0.161616,0.666,0.666666,有无限循环小数必然
13、有有限循环小数;有限不循环小数:我们把无限不循环小数有限数字(小数点右边至少有两位或两位以上不循环数字小数)称之为有限不循环小数,如:3.1415,3.141592,3.1415926,1.4142,1.41421356,有无限不循环小数必然拥有有限不循环小数,在数值逻辑中,有限不循环小数与潜无限不循环小数拥有替代无理数数值的巨大意义与作用;有限小数中的小数再如此细致地划分出有限循环小数、有限不循环小数,才更切合实际,在数值逻辑公理系统中会发现:有限循环小数与有限不循环小数客拥有客观存在性,这是一个认识问题。7、有理数:我们将广义整数与分数统称为有理数,广义整数包含着整数与哲理整分数(哲理整小
14、数)、分数包含着哲理整分数(哲理整小数)与普通分数(普通小数),。8、广义整数、广义数论、广义集合论、广义数学真理、深化丰富了毕大哥拉斯先生算术、经典数论以及康托尔先生集合论的数学思想:数学有理数系数值逻辑公理系统:01 12 23 ,(此结构式上下交错不能散开)0.51.5 1.52.5 2.53.5 ,第1环节:101=01,第2环节:201=0.51.5,第3环节:301=12,第4环节:401=1.52.5,第5环节:501=23,符号: 意指派生子集合,数学有理数系数值逻辑公理系统与深刻内涵以及在亚里士多德先生潜无限数学思想指导下形成的数论与集论统称为广义数论和广义集论,构成广义数学
15、真理,因为它们已经不同于经典意义下整数、数论、集论,广义数学真理深化丰富发展了毕达哥拉斯先生算术、经典数论及康托尔先生集合论的数学思想,哲理整小数(哲理整分数)、奇数能被2哲理整除、广义整数、广义数论、广义集合论、广义数学真理等等是辩证数值逻辑推理出来的科学产物,数学的传统逻辑与现代数理逻辑无论如何是无法证明出来和无论如何无法得到的东西,换言之,再好的逻辑均有局限性,。9、关于对引进无理数的方法以及对无理数数值不尽相同的理性看法:我们将无限不循环小数且其数值永远不会终结的小数称之为无理数,如此严格定义无理数方无懈可击,无孔可入,在数学王国里无理数客观存在着,拥有客观存在性,将客观无理数的概念、
16、定义引入数学是非常必要的,根据无理数自身的定义,必须谦卑地说把客观无理数的概念与定义引进数学却引不进任何一个客观的完整的无理数的具体数值,这是因为客观无理数的数值不仅无限不循环且永远不会终结,因此务必把无理数排斥在数值逻辑公理系统之外,只能用潜无限的不循环小数取代客观无理数的数值,这是因为任意一无理数的具体数值无穷无尽,不能与有理数在一个(数值逻辑)公理系统中和谐共处,是性质不同的两类矛盾,一类有公度比、一类无公度比,它们针锋相对互相排斥,无限循环小数、有限小数(包含着有限循环小数、有限不循环小数)、潜无限不循环小数的数值恰好有分数完全的取而代之,此问题不应成为再有争议的,关于无理数及其数值只
17、能具体问题具体引进、具体构造、具体问题具体分析、具体对待、特别对待,只能用潜无限不循环小数取代客观无理数数值,潜无限不循环小数依然属于有理数的范畴,这就是无理数的两面性,切莫在数值逻辑公理系统中大谈特谈无理数,这是由于无理数及其数值自身发展、变化的客观规律(无公度比、无限不循环小数的数值永远不会终结)所决定的,否则,只有违心的默认现状,因为它只是一个认识问题,关于无理数所存在的问题似乎有理说不清、有理难辨,古今数学思想书中也对引进无理数的方法提出了不同看法和质疑(第四册5051页):“无理数的逻辑定义是颇有些不自然的,从逻辑上看,一个无理数不是简单的一个符号,或一对符号,象两个整数的比那样,而
18、是一个无穷的集合,如康托尔的基本序列或戴金的分割,逻辑地定义出来的无理数是一个智慧的怪物。我们可以理解,为什么希腊人和许多后继的数学家都觉得这样的数难以掌握。”,换言之,一定要理性、辩证地认识、引进无理数与无理数数值,不应有忽悠人的任何因素,例如传统引进无理数及其数值的方法亦仅仅是承认接受了无理数的客观存在性,字母符号并非无理数及其无理数数值的全部意义,总之,一定要遵循无理数数值发展变化着的客观规律性,承认接受了实无限的专家千万莫排斥丢掉了潜无限数学真理,应用数学顺应1+1=2的客观规律,且运用了潜无限的科学方法与手段成功地解决了无数数学矛盾,早已被实践检验证明了是正确的自然科学和真理,数学基
19、础数值逻辑迄今为止依然没有摆脱实无限的困扰与困惑,。10、永无限:在数值逻辑中,我们将处在不断发展变化中的永不枯竭、永不终极、永不终结的无限称之为永无限,永无限是客观存在与科学的认识论,永无限为潜无限提供科学保障,。11、潜无限:在数值逻辑中,处在不断发展变化中的无限且理解为未完成的无限,将其称之为潜无限,潜无限是手段与科学的方法论,本文所提无限(无穷),泛指永无限(永无穷)与潜无限(潜无穷),本文支持亚里士多德、克罗内克、勒贝格、波雷尔、高斯先生潜无限正确的数学思维理念,永无限、潜无限要牢牢把握占据数值逻辑的主导地位,只承认接受潜无限,如果不承认接受无理数的客观存在性,不正确地引入无理数的概念与其数值,其认识论(理论)亦是非完整的;。12、实无限与实数: (1)、实无限: 处在发展变化中的无限且理解为已完成、已终极终结的无限,我们的前人将其称之为实无限,数学专家为了建立数理逻辑,引入了实无限的概念,若不引入实无限的概念,即使一个无理数的完整数值我们人类都构造不完,何谈建立实无限集合、实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆现代职业技术学院《材料工程基础》2023-2024学年第二学期期末试卷
- 2025-2030少女内衣市场发展分析及行业投资战略研究报告
- 2024届山东省青岛42中重点名校中考数学模拟试题含解析
- 甘肃省靖远县靖安中学2024年毕业升学考试模拟卷数学卷含解析
- 广东省东莞市寮步镇信义校2024届中考冲刺卷数学试题含解析
- 2025车间职工安全培训考试试题及答案黄金题型
- 25年公司三级安全培训考试试题答案全套
- 2024-2025项目部管理人员安全培训考试试题【基础题】
- 2025年员工安全培训考试试题附参考答案(完整版)
- 2024-2025新员工入职前安全培训考试试题有完整答案
- 2025年会计政策更新试题及答案
- 2025年陕西高中学业水平合格性考试数学模拟试卷(含答案详解)
- 江苏省南通市海门区2024-2025学年第二学期九年级期中考试历史试卷(含答案)
- 2025分布式光伏工程验收标准规范
- GB/T 25139-2025铸造用泡沫陶瓷过滤网
- (二模)湛江市2025年普通高考测试(二)生物试卷(含答案详解)
- 2025年上海市普陀区中考英语二模试卷(含答案)
- 2024年初级药师考试历年真题试题及答案
- 9.2法律保障生活 课件 -2024-2025学年统编版道德与法治七年级下册
- 幼儿园牛奶知识普及课件
- 公司泥头车管理制度
评论
0/150
提交评论