




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上质粒提取简介及问题分析一、导论(一) 质粒提取的原理:为了方便理解,这里罗列一下碱法质粒抽提用到三种溶液:溶液I,50 mM葡萄糖,25 mM Tris-HCl,10 mM EDTA,pH 8.0; 溶液II,0.2 N NaOH,1% SDS;溶液III,3 M 醋酸钾,2 M 醋酸。 让我们先来看看溶液I的作用。任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH值的Tris-HCl溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?加了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。因此,如果溶液I中缺了葡萄糖其实对质粒的抽
2、提本身而言几乎没有任何影响,所以说溶液I中葡萄糖是可缺的。EDTA是Ca2+和Mg2+等二价金属离子的螯合剂,配在分子生物学试剂中的主要作用是:抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达 10 mM 的EDTA,就是要把大肠杆菌细胞中的所有二价金属离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要是在不太长的时间里完成质粒抽提,就不用怕DNA会迅速被降解,因为最终溶解质粒的TE缓冲液中有EDTA。如果手上正好缺了溶液I,可不可以抽质粒呢?只要用等体积的水或LB培养基来悬浮菌体就可以了。有一点不能忘的是,菌体一定要悬浮均匀,不能有结块。 轮到溶液II了。这是用新鲜的0.4
3、 N的NaOH和2%的SDS等体积混合后使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有吸收空气中的CO2而减弱了碱性。很多人不知道其实破细胞的主要是碱,而不是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自然就难高效率抽提得到质粒。如果只用SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是弱
4、了点而已。很多人对NaOH的作用误以为是为了让基因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关DNA变性复性的描述所导致。有人不禁要问,既然是NaOH溶解的细胞,那为什么要加SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。基因组DNA的断裂会带来麻烦。溶液III加入后就会有大量的沉淀,但大部分人却不明白沉淀的本质。最容易产生的误解是,当SDS碰到酸性后发生的沉淀。如果这样怀疑,往1%的SDS溶液中加2M醋酸溶液看看就知道不是这么回事了。
5、大量沉淀的出现显然与SDS的加入有关系。如果在溶液II中不加SDS,也会有少量沉淀,但量上要少得多,显然是盐析和酸变性沉淀出来的蛋白质。既然SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在1%的SDS溶液中慢慢加入5 N的NaCl,会发现SDS在高盐浓度下是会产生沉淀的。因此高浓度的盐导致了SDS的沉淀。但如果你加入的不是NaCl而是KCl,你会发现沉淀的量要多的多。这其实是十二烷基硫酸钠(SDS)遇到钾离子后变成了十二烷基硫酸钾(PDS),而PDS是水不溶的,因此发生了沉淀。如此看来,溶液III加入后的沉淀实际上是钾离子置换了SDS中的钠离子形成了不溶性的PDS,而高浓度的盐,使得沉
6、淀更完全。大家知道SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了,让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结合。(二)细菌的收获和裂解。细菌的收获可通过离心来进行,而细菌的裂解则可以采用多种方法中的任意一种,这些方法包括用非离子型或离子型去污剂、有机溶剂或碱进行处理及用加热处理等。选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解后用于纯化质粒DNA的技术。 尽管针对质粒和宿主的每一种组合分别
7、提出精确的裂解条件不切实际,但仍可据下述一般准则来选择适当方法,以取得满意的结果。1、大质粒(大于15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和EDTA进生处理,破坏细胞壁和细胞外膜,再加入SDS一类去污剂溶解球形体。这种方法最大限度地减小了从具有正压的细菌内部把质粒释放出来所需要的作用力。2、可用更剧烈的方法来分离小质粒。在加入EDTA后,有时还在加入溶菌酶后让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。这些处理可破坏碱基配对,故可使宿主的线状染色体DNA变性,但闭环质粒DNA链由于处于拓扑缠绕状态而不能彼此分开。当条件恢复正常时,质粒DNA
8、链迅速得到准确配置,重新形成完全天然的超螺旋分子。3、一些大肠杆菌菌株(如HB101的一些变种衍生株) 用去污剂或加热裂解时可释放相对大量的糖类,当随后用氯化铯-溴化乙锭梯度平衡离心进行质粒纯化时它们会惹出麻烦。糖类会在梯度中紧靠超螺旋质粒DNA所占位置形成一致密的、模糊的区带。因此很难避免质粒DNA内污染有糖类,而糖类可抑制多种限制酶的活性。 故从诸 如HB101和TG1等大肠杆菌蓖株中大量制备质粒时,不宜使用煮沸法。4、当从表达内切核酸酶A的大肠杆菌菌株(endA 株,如HB101) 中小量制备质粒时,建议不使用煮沸法。因为煮沸不能完全灭活内切核酸酶A,以后在温育(如用限制酶消化)时,质粒
9、DNA会被降解。但如果通过一个附加步骤(用酚:氯仿进行抽提)可以避免此问题。5、目前这一代质粒的拷贝数都非常高,以致于不需要用氯霉素进行选择性扩增就可获得高产。然而,某些工作者沿用氯霉素并不是要增加质粒DNA的产量,而是要降低细菌细胞在用于大量制备的溶液中所占体积。大量高度粘稠的浓缩细菌裂解物,处理起来煞为费事,而在对数中期在增减物中加入氯霉素可以避免这种现象。有氯霉素存在时从较少量细胞获得的质粒DNA的量以与不加氯霉素时从较大量细胞所得到的质粒DNA的量大致相等。(三)质粒DNA的纯化。常用的纯化方法都利用了质粒DNA 相对较小及共价闭合环状这样两个性质。如,用氯化铯-溴化乙锭梯度平衡离心分
10、离质粒和染色体DNA 就取决于溴化乙锭与线状以及与闭环DNA分子的结合量有所不同。 溴化乙锭通过嵌入碱基之间而与DNA结合,进而使双螺旋解旋。由此导致线状DNA的长度有所增加,作为补偿,将在闭环质粒DNA中引入超螺旋单位。最后,超螺旋度大为增加, 从而阻止了溴化乙锭分了的继续嵌入。但线状分子不受此限,可继续结合更多的染料,直至达到饱和(每2个碱基对大约结合1个溴化乙锭分子)。由于染料的结合量有所差别,线状和闭环DNA分了在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。多年来,氯化铯-溴化乙锭梯度平衡离心已成为制备大量质粒DNA 的首选方法。然而该过程既昂贵又费时,为此发展了许多替代方法。
11、其中主要包括利用离子交换层析、凝胶过滤层析、分级沉淀等分离质粒DNA和宿主DNA的方法。二、质粒DNA的小量制备(一)细菌的收获和裂解。1、收获。1) 将2ml含相应抗生素的LB加入到容量为15ml 并通气良好(不盖紧)的试管中,然后接入一单菌落,于30剧烈振摇下培养过夜。2) 将1.5ml培养物倒入离心管中,4、12000g离心30秒,将剩余的培养物贮存于4。3) 吸去培养液,使细菌沉淀尽可能干燥。2、碱法裂解。1) 将细菌沉淀,所得重悬于100l用冰预冷的溶液I中,剧烈振荡。溶液I可成批配制,高压下蒸气灭菌15分钟,贮存于4。须确使细菌沉淀在溶液I中完全分散。2) 加200l新配制的溶液。
12、盖紧管口,快速颠倒离心管5次,以混合内容物。应确保离心管的整个内表面均与溶液接触。不要振荡,将离心管放置于冰上。3) 加150l用冰预冷的溶液。盖紧管口,将管倒置后温和地振荡10秒钟溶液在粘稠的细菌裂解物中分散均匀,之后将管置于冰上3-5分钟。4) 用离心机于4、12000g离心5分种,将上清转移到另一离心管中。5) 可做可不做:加等量酚:氯念,振荡混匀, 用微量离心机于4 以12000g离心 2分钟,将上清转移到另一良心管中。有些工作者认为不必用酚:氯仿进行抽提,然而由于一些未知的原因,省略这一步,往往会得到可耐受限制酶切反应的DNA。6) 用2倍体积的乙醇于室温沉淀双锭DNA。振荡混合,
13、于室温放置2分钟。7) 用微量离心机于4以12 000g离心5分钟。8) 小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。再将附于管壁的液滴除尽。9) 用1ml70%乙醇于4洗涤双链DNA沉淀,去掉上清,在空气中使核酸沉淀干燥10分钟。i. 此法制备的高拷贝数质粒(如Xf3或pUC),其产量一般约为:每毫升原细菌培养物3-5g。ii. 如果要通过限制酶切割反应来分析DNA,可取1l DNA溶液加到另一含8l水的微量离心管内,加1l 10×限制酶缓冲液和1单位所需限制酶, 在适宜温育1-2小时。将剩余的DNA贮存于-20。iii. 此方法按适当比例放大可适用于100ml细菌
14、培养物:。3、煮沸裂解。1) 将细菌沉淀,所得重悬于350lSTET中。STET:0.1mol/L NaCL,10mmol/L Tris.Cl(pH8.0),1mmol/L EDTA(pH8.0),5% Triton X-100。2) 加25l新配制的溶菌酶溶液10mg/ml,用10mmol/L Tris.Cl(pH8.0)配制,振荡3秒钟以混匀之。如果溶淮中pH低于8.0,溶菌酶就不能有效发挥作用。3) 将离心管放入煮沸的水浴中,时间恰为40秒。4) 用微量离心机于室温以12000g离心10分种。5) 用无菌牙签从微量离心管中去除细菌碎片。6) 在上清中加入40l 5mol/L乙酸钠(pH5
15、.2)和420l异丙醇,振荡混匀,于室温放置5分钟。7) 用微量离心机于4以12 000g离心5分种,回收核酸沉淀。8) 小心吸去上清液,将离心管倒置于一张纸巾上,以使所有液体流出。再将附于管壁的液滴除尽。除去上清的简便方法是用一次性使用的吸头与真空管道相连,轻缓抽吸,并用吸头接触液面。当液体从管中吸出时,尽可能使吸头远离核酸沉淀,然后继续用吸头通过抽真空除去附于管的液滴。9) 加1ml 70%乙醇,于4以12 000g离心2分钟。10)按步骤8)所述再次轻轻地吸去上清,这一步操作要格外小心,因为有时沉淀块贴壁不紧,去除管壁上形成的所有乙醇液滴,打开管口,放于室温直至乙醇挥发殆尽,管内无可见的
16、液体(2-5)分钟。 11)用50l含无DNA酶的胰RNA酶(20g/ml)的TE(pH8.0)溶解核酸稍加振荡,贮存于-20。 注:当从表达内切核酸酶A的大肠杆菌株(endA 株,如HB101 )中小量制粒尤其DNA时,建议舍弃煮沸法。因为煮沸步骤不能完全灭活内切核酸酶A,以后在Mg 2 存在下温育(V中用限制酶时)质粒DNA可被降解。 在上述方案的步骤9)之间增加一步,即用酚:氯仿进行抽提,可以避免这一问题。(二) 质粒DNA小量制备的问题与对策。碱裂解和煮沸都极其可靠,重复性也很好,而且一般没有什么麻烦。多年来,在我们实验室中日常使用这两种方法的过程中,只碰到过两个问题:1、有些工作者首
17、次进行小量制备时,有时会发现质粒DNA不能被限制酶所切割,这几乎总是由于从细菌沉淀或从核酸沉淀中去除所有上清液时注意得不够。大多数情况下,用酚:氯仿对溶液进行抽提可以去除小量备物中的杂质。如果总是依然存在,可用离心柱层析注纯化DNA。2、在十分偶然的情况下,个别小时制备物会出现无质粒DNA的现象。这几乎肯定是由于核酸沉淀颗粒已同乙醇一起被弃去。三、质粒DNA的大量制备(一) 在丰富培养基中扩增质粒许多年来,一直认为在氯霉素存在下扩增质粒只对生长在基本培养基上的细菌有效,然而在带有pMBl或ColEl复制子的高拷贝数质粒的大肠杆菌菌株中,采用以下步骤可提高产量至每500ml培养物2-5mg质粒D
18、NA,而且重复性也很好。1) 将30ml含有目的质粒的细菌培养物培养到对数晚期(DNA 600约0.6)。培养基中应含有相应抗生素,用单菌落或从单菌落中生长起来的小量液体闭关物进行接种。2) 将含相应抗生素的500ml LB或Terrific肉汤培养基(预加温至37)施放入25ml对数晚期的培养物,于37剧烈振摇培养25小时(摇床转速300转/分),所得培养物的OD 600值约为0.4。3) 可做可不做:加2.5ml氯霉素溶液(34mg/ml溶于乙醇),使终浓度为170g/ml。像pBR322一类在宿主菌内只以中等拷贝娄竿行复的质粒,有必要通过扩增。这些质粒只要从生长达到饷新一代的质粒(如pU
19、C质粒)可复制达到很高的拷贝数,因此无需扩增。这些质粒只要从生长达到饱和的细菌培养物即可大量提纯。但用氯霉素进行处理,具有抑制细菌复制的优点,可减少细菌裂解物的体积和粘稠度,极大地简化质粒纯化的过程。所以一般说来,尽管要在生长中的细菌培养物里加入氯霉素略显不便,但用氯霉素处理还是利大于弊。4)于37剧烈振摇(300转/分),继续培养12-16小时。(二) 细菌的收获和裂解。1、收获。1) 4以4000转/分离心15分钟,弃上清,敞开离心管口并倒置离心管使上清全部流尽。2) 将细菌沉淀重悬于100ml用冰预冷的STE中。STE:0.1mol/L NaCl,10mmol/L Tris-HCl(pH
20、8.0),1mmol/L EDTA(pH8.0)。3) 按步骤1)所述方法离心,以收集细菌细胞。2、碱裂解法。1) 将冼过的500ml 培养物的细菌沉淀物来自收获细菌的步骤3 重悬于10ml(18ml)溶液I中。2) 加1ml(2ml)新配制的溶菌酶溶液10mg/ml,溶于10mmol/L Tris-HCl(pH8.0)。当溶液的pH值低于8.0时,溶菌酶不能有效工作。3) 加20ml(40ml)新配制的溶液。盖紧瓶盖,缓缓颠倒离心瓶数次,以充分混匀内容物。于室温放置5-10分钟。4) 加15nl(20ml)用冰预冷的溶液。封住瓶口,摇动离心瓶数次以混匀内容物,此时应不再出现分明的两个液相。置
21、冰上放10分钟,应形成一白色絮状沉淀。于0放置后所形成的沉淀应包括染体DNA、 高分子量RNA和钾-SDS-蛋白质-膜复合物。5) 用合适转头于4以4000转/分离心15分钟,不开刹车而使转头自然停转。如果细菌碎片贴壁不紧,可以5000转/分再度离心20分钟, 然后尽可能将上清全部转到另一瓶中,弃去残留在离心管内的粘稠状液体。未能形成致密沉淀块的原因通常是由于溶液与细菌裂解物混合不充分步骤4)。6) 上清过滤至一250ml离心瓶中,加0.6体积的异丙醇,充分混匀,于室温放置10分钟。7) 用合适转头于室温以500转/分离心15分钟,回收核酸。如于4离心,盐也会了生沉淀。8) 小心倒掉上清,敞开
22、瓶口倒置离心瓶使残余上清液流尽,于室温用70%乙醇洗涤沉积管壁。倒出乙醇,用与真空装置相联的巴期德吸出附于瓶壁的所有液滴,于室温将瓶倒置放在纸巾上,使最后残余的痕量乙醇挥殆尽。9) 用3ml TE(pH8.0)溶解核酸沉淀。四、质粒DNA的纯化(一) 聚乙二醇沉淀法提取质粒DNA。1、将核酸溶液所得转入15mlCorex 管中, 再加3ml 用冰预冷的5mol/L LiCl溶液,充分混匀,用合适转头于4下以10000转/分离心10分钟。LiCl可沉淀高分子RNA。2、将上清转移到另一30mlCorex管内,加等量的异丙醇, 充分混匀, 用SorvallSS34转头(或与其相当的转尖)于室温以1
23、0 000转/分离心10分钏, 回收沉淀的核酸。3、小心去掉上清,敞开管口,将管倒置以使最后残留的液滴流尽。于室温用70%乙醇洗涤沉淀及管壁,流尽乙醇,用与真空装置相连的巴其德吸管吸去附于管壁的所有液滴,敞开管口并将管侄置,在纸巾上放置几分钟,以使最后残余的痕量乙醇蒸发殆尽。4、用500l含无DNA酶的胰RNA酶(20g/ml )的TE(pH8.0)溶解沉淀,将溶液转到一微量离心管中,于室温放置30分钟。5、加500l含13%(w/v)聚乙二醇(PEG 8000)的1.6mol/L NaCl,充分混合,用微量离心机于4以12000g离心5分钟,以回收质粒DNA。6、吸出上清,用400l TE(
24、pH8.0)溶解质粒DNA沉淀。用酚、酚:氯仿、氯仿各抽1次。7、将水相转到另一微量离心管中,加100l 10mol/L乙醇铵,充分混匀,加2倍体积(约1ml)乙醇,于室温放置10分钟,于4以12 000g离心5分钟,以回收沉淀的质粒DNA。8、吸去上清,加200l处于4以12 000g离心2分钟。9、吸去上清,敞开管口,将管置于实验桌上直到最后可见的痕量乙醇蒸发殆尽。 10)用500l TE(pH8.0)溶解沉淀1:100稀释用TE(pH8.0) 后测量OD 260,计算质粒DNA的浓度(1OD260=50g质粒DNA/ml), 然后将DNA贮于-20。10、纯化。一些试剂的生化作用原理1、
25、溶液溶霉菌:水解菌体细胞壁的主要化学成分肽聚糖中的-1,4糖苷键,因而具有溶菌作用。葡萄糖:增加溶液的粘度,防止DNA受机械剪切力作用而降解。EDTA:金属离子螯合剂,螯合Mg2+,Ca2+等金属离子,抑制脱氧核糖核酸酶(DNase)对DNA的降解作用(DNase 作用时需要一定的金属离子强度作辅基),同时EDTA的存在,有利于溶霉菌的作用。因为溶霉菌的反应要求有较低的离子强度环境。2、溶液-NaOH-SDS液NaOH:核酸在pH值为59的溶液中是最稳定的,但pH大于12或小于3时,就会引起双键之间氢键的解离而变性。在溶液中的NaOH浓度为0.2N,加入提取液时,该系统的pH就会高达12.6,
26、因而促使染色体DNA与质粒DNA的变性。SDS:为阴离子表面活性剂,主要功能有:溶解细胞膜上的脂肪与蛋白,从而破坏细胞膜;解聚细胞中的核蛋白SDS蛋白质结合为复合物,使蛋白变性沉淀下来,但SDS能抑制核糖核酸没的作用,所以在以后的提取过程中,必须把它去除干净,以防用RNase去除RNA时受到干扰。3、溶液-3M KAc(pH4.8)溶液:KAc的水溶液呈碱性,为了调节pH至4.8,必须加入大量的冰醋酸,所以该溶液实际上是KAc-HAc的缓冲液。用pH4.8的KAc溶液是为了把pH 12.6的抽取液pH调回到中性,使变性的质粒DNA能够复性,并能稳定存在。而高盐的3molL KAc有利于变性的大
27、分子染色体DNA、RNA以及SDS-蛋白质复合物凝聚而沉淀之。前者是因为中和核酸上的电荷。减少相斥力而互相聚合,后者是因为钠盐与SDS-蛋白质复合物作用后,能形成溶解度较小的钠盐形式复合物,使沉淀完全。4、为什么用无水乙醇沉淀DNA:此为实验中最常用的沉淀方法。乙醇的优点是低度极性,可以以任意比例和水相混容,乙醇与核酸不会起任何化学反应,对DNA很安全,因此是理想的沉淀剂。DNA溶液时以水合状态稳定存在的DNA,当加入乙醇时,乙醇会夺去DNA周围的水分子,使DNA失水而易于聚合。一般实验中,是加2倍体积的无水乙醇与DNA相混合。其乙醇的最终含量占67%左右。因而也可改用95%乙醇来代替无水乙醇(因无水乙醇价格更贵),但加95%乙醇使总体积增大,而DNA在溶液中总有一定程度的溶解,因而DNA损失也增大,尤其用多次乙醇沉淀时,会影响收得率。折衷的做法是初次沉淀DNA是可用95%乙醇代替无水乙醇,最后的沉淀步骤要使用无水乙醇。也可以用异丙醇选择性沉淀DNA,一般在室温下放置1530min即可。使用乙醇在低温条件下沉淀DNA,分子运动大大减少,DNA易于聚合而沉淀,且温度越低,DNA沉淀得越快。5、RNase处理核糖核酸后,再次沉淀DNA时为什么一定要加NaAc至最浓度达0.10.25M。在pH 8左右的DNA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流公司设备采购合同
- 绿色环保产品开发与销售协议
- 软件行业软件开发与技术服务解决方案
- 商业园区物业管理合作协议
- 行政管理心理学知识图谱建立试题及答案
- 行政管理中的人本管理思想试题及答案
- 2025技术授权借贷合同范本
- 2025工程承包劳务合同
- 2025非官方产权房买卖合同范本
- 自考行政管理总结分类试题及答案
- 临床抽血查对制度
- 未届期股权转让后的出资责任归属
- 企业生产计划与安全管理的协同策略研究
- 全国第三届职业技能大赛(化学实验室技术)选拔赛理论考试题库(含答案)
- 数字与图像处理-终结性考核-国开(SC)-参考资料
- 老年患者血液透析的护理
- 山东省烟台市2025届高三第二次模拟考试英语试卷含解析
- 儿童重症患儿护理
- DB15T3644-2024 国有企业阳光采购规范
- 考点12二项分布及其应用(原卷版)
- 《中医经络学说》课件
评论
0/150
提交评论