




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、博源教育辅导讲义学员姓名: 辅导科目: 数学 教师: 孙迎春课 题等腰三角形、直角三角形、勾股定理、面积授课时间:备课时间:教学目标1. 了解直角三角形的判定与性质2. 理解直角三角形的边角关系,掌握用勾股定理解某些简单的实际问题。3.灵活运用等腰(等边)三角形的判定定理与性质定理,以及底边上的高、中线、顶角的平分线三线合一的性质进行有关的证明和计算。重点、难点重点:勾股定理的推导和引用难点:三线合一以及勾股定理的灵活应用考点及考试要求(含中考)1. 等腰三角形、等边三角形的有关概念(A)2. 等腰三角形、等边三角形的性质和一个三角形是等腰三角形的条件(D)3. 直角三角形的概念(A)4. 直
2、角三角形的性质和一个三角形是直角三角形的条件(D)5. 运用勾股定理解决简单问题,用勾股定理的逆定理判定直角三角形(D)教学内容一、 等腰(等边)三角形【经典例题】例1、等腰三角形一腰上的高与腰长之比为12,则等腰三角形的顶角为( )A、300 B、600 C、1500 D、300或1500 分析:如图所示,在等腰ABC中,CD为腰AB上的高,CDAB12,ACAB,CDAC12,在RtABC中有答案D。 例2、如图,在ABC中,ACBC,ACB900,D是AC上一点,AEBD的延长线于E,又AEBD,求证:BD是ABC的角平分线。分析:ABC的角平分线与AE边上的高重合,故可作辅助线补全图形
3、,构造出全等三角形(证明略)。例3、如图,在等腰直角ABC中,AD为斜边上的高,以D为端点任作两条互相垂直的射线与两腰分别相交于E、F点,连结EF与AD相交于G,试问:你能确定AED和AGF的大小关系吗?分析与结论:依题意有ADEFDC,EDF为等腰直角三角形,又AEDAEFDEG,AGFAEFEAG,事实上EAG与DEG都等于450,故AEDAGF。评注:加强对图形的分析、发现、挖掘等腰三角形、全等三角形,用相同或相等角的代数式表示AED、AGF,从而比较其大小是本题的解题关键。课内达标训练:一、填空题:1、等腰三角形的两外角之比为52,则该等腰三角形的底角为 。2、在ABC中,ABAC,B
4、D平分ABC交AC于D,DE垂直平分AB,E为垂足,则C 。3、等腰三角形的两边长为4和8,则它腰上的高为 。4、在ABC中,ABAC,点D在AB边上,且BDBCAD,则A的度数为 。5、如图,ABBCCD,ADAE,DEBE,则C的度数为 。 6、如图,D为等边ABC内一点,DBDA,BPAB,DBPDBC,则BPD 。7、如图,在ABC中,AD平分BAC,EGAD分别交AB、AD、AC及BC的延长线于点E、H、F、G,已知下列四个式子: 1(23) 12(32)4(32) 41其中有两个式子是正确的,它们是 和 。二、选择题:1、等腰三角形中一内角的度数为500,那么它的底角的度数为( )
5、A、500 B、650 C、1300 D、500或6502、如图,D为等边ABC的AC边上一点,且ACEABD,CEBD,则ADE是( ) A、等腰三角形 B、直角三角形 C、不等边三角形 D、等边三角形 3、如图,在ABC中,ABC600,ACB450,AD、CF都是高,相交于P,角平分线BE分别交AD、CF于Q、S,那么图中的等腰三角形的个数是( ) A、2 B、3 C、4 D、54、如图,已知BO平分CBA,CO平分ACB,且MNBC,设AB12,BC24,AC18,则AMN的周长是( ) A、30 B、33 C、36 D、39 5、如图,在五边形ABCDE中,AB1200,EAABBC
6、DCDE,则D( ) A、300 B、450 C、600 D、67.50三、解答题:1、如图,在ABC中,ABAC,D、E、F分别为AB、BC、CA上的点,且BDCE,DEFB。求证:DEF是等腰三角形。2、为美化环境,计划在某小区内用30平方米的草皮铺设一块边长为10米的等腰三角形绿地。请你求出这个等腰三角形绿地的另两边长。3、如图,在锐角ABC中,ABC2C,ABC的平分线与AD垂直,垂足为D,求证:AC2BD。 4、在等边ABC的边BC上任取一点D,作DAE600,AE交C的外角平分线于E,那么ADE是什么三角形?证明你的结论。二、直角三角形、勾股定理、面积【经典例题】例1、如图,在四边
7、形ABCD中,A600,BD900,BC2,CD3,则AB?分析:通过作辅助线,将四边形问题转化为三角形问题来解决,其关键是对内分割还是向外补形。答案: 例2、如图,P为ABC边BC上一点,PC2PB,已知ABC450,APC600,求ACB的度数。分析:本题不能简单地由角的关系推出ACB的度数,而应综合运用条件PC2PB及APC600来构造出含300角的直角三角形。这是解本题的关键。答案:ACB750(提示:过C作CQAP于Q,连结BQ,则AQBQCQ) 例3、如图,公路MN和公路PQ在点P处交汇,且QPN300,点A处有一所中学,AP160米,假设汽车行驶时,周围100米以内会受到噪声的影
8、响,那么汽车在公路MN上沿PN方向行驶时,学校是否会受到噪声的影响?如果受影响,已知汽车的速度为18千米小时,那么学校受影响的时间为多少秒?分析:从学校(A点)距离公路(MN)的最近距离(AD80米)入手,在距A点方圆100米的范围内,利用图形,根据勾股定理和垂径定理解决它。略解:作ADMN于D,在RtADP中,易知AD80。所以这所学校会受到噪声的影响。以A为圆心,100米为半径作圆交MN于E、F,连结AE、AF,则AEAF100,根据勾股定理和垂径定理知:EDFD60,EF120,从而学校受噪声影响的时间为:(小时)24(秒)评注:本题是一道存在性探索题,通过给定的条件,判断所研究的对象是
9、否存在。 例3图 例4图例4、台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力如图12,据气象观测,距沿海某城市A的正南方向220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米时的速度沿北偏东300方向往C移动,且台风中心风力不变。若城市所受风力达到或超过四级,则称为受台风影响。(1)该城市是否会受到这次台风的影响? 请说明理由。(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?解:(1)如图1,由点A作ADBC,垂足为D。AB220,B
10、30°AD110(千米)。由题意知,当A点距台风中心不超过160千米时,将会受到台风的影响。故该城市会受到这次台风的影响。(2)由题意知,当A点距台风中心不超过160千米时,将会受到台风的影响。则AEAF160。当台风中心从E处移到F处时,该城市都会受到这次台风的影响。由勾股定理得:。EF60(千米)。该台风中心以15千米时的速度移动。这次台风影响该城市的持续时间为(小时)。(3)当台风中心位于D处时,A市所受这次台风的风力最大,其最大风力为126.5(级)。评注:本题是一道几何应用题,解题时要善于把实际问题抽象成几何图形,并领会图形中的几何元素代表的意义,由题意可分析出,当A点距台
11、风中心不超过160千米时,会受台风影响,若过A作ADBC于D,设E,F分别表示A市受台风影响的最初,最后时台风中心的位置,则AEAF160;当台风中心位于D处时,A市受台风影响的风力最大。课内达标训练:一、填空题:1、如果直角三角形的边长分别是6、8、,则的取值范围是 。2、如图,D为ABC的边BC上的一点,已知AB13,AD12,BD5,ACBC,则BC 。 3、如图,四边形ABCD中,已知ABBCCDDA2231,且B900,则DAB 。4、等腰ABC中,一腰上的高为3cm,这条高与底边的夹角为300,则 。5、如图,ABC中,BAC900,B2C,D点在BC上,AD平分BAC,若AB1,
12、则BD的长为 。6、已知RtABC中,C900,AB边上的中线长为2,且ACBC6,则 。7、如图,等腰梯形ABCD中,ADBC,腰长为8cm,AC、BD相交于O点,且AOD600,设E、F分别为CO、AB的中点,则EF 。 8、如图,点D、E是等边ABC的BC、AC上的点,且CDAE,AD、BE相交于P点,BQAD。已知PE1,PQ3,则AD 。9、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积的和是 。二、选择题:1、如图,已知ABC中,AQPQ,PRPS,PRAB于R,PSAC于S,则三个结论:ASAR;QPAR
13、;BRPQSP中( ) A、全部正确 B、仅和正确 C、仅正确 D、仅和正确2、如果一个三角形的一条边的长是另一条边的长的2倍,并且有一个角是300,那么这个三角形的形状是( ) A、直角三角形 B、钝角三角形 C、锐角三角形 D、不能确定3、在四边形ABCD中,ADCD,AB13,BC12,CD4,AD3,则ACB的度数是( ) A、大于900 B、小于900 C、等于900 D、不能确定 4、如图,已知ABC中,B900,AB3,BC,OAOC,则OAB的度数为( ) A、100 B、150 C、200 D、250三、解答题: 1、阅读下面的解题过程:已知、为ABC的三边,且满足,试判断A
14、BC的形状。 解: ABC是直角三角形。问:(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号 ; (2)错误的原因是 ; (3)本题的正确结论是 。 2、已知ABC中,BAC750,C600,BC,求AB、AC的长。 3、如图,ABC中,AD是高,CE是中线,DCBE,DGCE于G。 (1)求证:G是CE的中点; (2)B2BCE。 4、如图,某校把一块形状近似于直角三角形的废地开辟为生物园,ACB900,BC60米,A360。(1)若入口E在边AB上,且与A、B等距离,请你在图中画出入口E到C点的最短路线,并求最短路线CE的长(保留整数);(2)若线段CD是一条水渠,并且D点在边
15、AB上,已知水渠造价为50元米,水渠路线应如何设计才能使造价最低?请你画出水渠路线,并求出最低造价。参考数据:sin3600.5878,sin5400.80905、已知ABC的两边AB、AC的长是方程的两个实数根,第三边BC5。(1)为何值时,ABC是以BC为斜边的直角三角形;(2)为何值时,ABC是等腰三角形,求出此时其中一个三角形的面积。6、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为6cm,则正方形A,B,C,D的面积之和为_cm2。7、如图,一个三级台阶,它的每一级的长、宽和高分别为20、3、2,A 和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是。8、如图,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3 .(1) 如图,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2) 如图,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;(3) 若分别以直角三角形ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惠州经济职业技术学院《工程管理》2023-2024学年第二学期期末试卷
- 西北工业大学《港澳台广告》2023-2024学年第二学期期末试卷
- 天津城市建设管理职业技术学院《算法课程设计》2023-2024学年第二学期期末试卷
- 武昌首义学院《社会工作伦理》2023-2024学年第二学期期末试卷
- 江西软件职业技术大学《电子商务运营管理》2023-2024学年第二学期期末试卷
- 山东农业工程学院《投资银行学》2023-2024学年第二学期期末试卷
- 北京中医药大学东方学院《信息化管理与技术创新》2023-2024学年第二学期期末试卷
- 北京城市学院《机械CAD》2023-2024学年第二学期期末试卷
- 顺德职业技术学院《民族建筑与文化实验》2023-2024学年第二学期期末试卷
- 黑龙江工程学院昆仑旅游学院《外贸制单英》2023-2024学年第二学期期末试卷
- 二级、三级电箱接线图
- 神经介入患者围术期管理
- 企业组织机构架构图
- 房地产集团公共区域标准化装修教学课件
- 吉林省办学基本标准手册
- 闽教版(2020版)六年级下册信息技术整册教案
- 光电倍增管PPT
- 1-2会员代表选票
- 沪科七年级数学下册 实数单元综合测试卷解析
- 学生安全协议书5篇
- 2020年广东省中考物理试卷分析
评论
0/150
提交评论