版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四章习题详解1 下列数列是否收敛?如果收敛,求出它们的极限:1) ;2) ;3) ;4) ;5) 。2 证明:3 判别下列级数的绝对收敛性与收敛性:1) ;2) ;3) ;4) 。4 下列说法是否正确?为什么?1) 每一个幂级数在它的收敛圆周上处处收敛;2) 每一个幂级数的和函数在收敛圆内可能有奇点;3) 每一个在连续的函数一定可以在的邻域内展开成泰勒级数。5 幂级数能否在收敛而在发散?6 求下列幂级数的收敛半径:1) (为正整数);2) ;3) ;4) ;5) ;6) 。7 如果的收敛半径为,证明的收敛半径。提示:8 证明:如果存在,下列三个幂级数有相同的收敛半径;。9 设级数收敛,而发散
2、,证明的收敛半径为。10 如果级数在它的收敛圆的圆周上一点处绝对收敛,证明它在收敛圆所围的闭区域上绝对收敛。11 把下列各函数展开成的幂级数,并指出它们的收敛半径:1) ;2) ;3) ;4) ;5) ;6) ;7) ;8) 。12 求下列各函数在指定点处的泰勒展开式,并指出它们的收敛半径:1) ,;2) ,;3) ,;4) ,;5) ;6) ;。13 为什么在区域内解析且在区间取实数值的函数展开成的幂级数时,展开式的系数都是实数?14 证明在以的各幂表出的洛朗展开式中的各系数为,。提示:在公式中,取为,在此圆上设积分变量。然后证明的积分的虚部等于零。15 下列结论是否正确?用长除法得因为 所以 16 把下列各函数在指定的圆环域内展开成洛朗级数:1) ,;2) ,;3) ,;4) ,;5) ,在以为中心的圆环域内;6) ,在的去心邻域内;7) ,。17 函数能否在圆环域展开成洛朗级数?为什么?18 如果为满足关系的实数,证明提示:对展开成洛朗级数,并在展开式的结果中置,再令两边的实部与实部相等,虚部与虚部相等。19 如果为正向圆周,求积分的值。设为:1) ;2) ;3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 眼科青光眼手术注意事项指南
- 旧建筑拆除协议书标准范本
- 2026年董事及高级职员责任保险合同
- 2026年医疗市场销售分析合同
- 2026年个人健康评估设备租赁协议
- 计算机动画制作教学设计方案
- 智能变压器风冷控制柜操作说明
- 班主任工作经验总结报告
- 建筑工程质量验收评分标准模板
- 餐饮连锁品牌员工激励方案
- 水利工程施工安全生产管理
- 通信产业集团招聘考试真题2025
- 保险行业人才引进的趋势与挑战-保险公司人力资源负责人
- 2024明阳风机MY2.0Se风力发电机组运行状态及故障代码手册(ORRB)
- 2025年度浙江省政府采购评审专家资格能力测试试卷A卷附答案
- 国家开放大学《公共政策概论》机考含参考答案
- 王家大院课件
- 空间定位展示技术-洞察及研究
- 江苏省南京市六校联合体2024-2025学年高二下学期3月联合调研英语试题
- 静配中心感染管理制度
- 2026届新高考数学热点精准复习 分析命题走向+明确教学方向
评论
0/150
提交评论