版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上1.(2013新课标高考理科23)已知曲线C1的参数方程为 (为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为. ()把C1的参数方程化为极坐标方程;()求C1与C2交点的极坐标(0,02)。【解析】将消去参数,化为普通方程,即:.将代入得.()的普通方程为.由,解得或.所以与交点的极坐标分别为,2.(2013新课标全国高考理科23)已知动点P,Q都在曲线C: 上,对应参数分别为t= 与=2(02),M为PQ的中点.(1)求M的轨迹的参数方程.(2)将M到坐标原点的距离d表示为的函数,并判断M的轨迹是否过坐标原点.【解题指南】(1)借助
2、中点坐标公式,用参数表示出点M的坐标,可得参数方程.(2)利用距离公式表示出点M到原点的距离d,判断d能否为0,可得M的轨迹是否过原点.【解析】(1)依题意有因此. M的轨迹的参数方程为(2)M点到坐标原点的距离.当时,故M的轨迹过坐标原点.11.(2012新课标全国高考文科23)与(2012新课标全国高考理科23)相同已知曲线的参数方程是,以坐标原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程是,正方形的顶点都在上,且依逆时针次序排列,点的极坐标为. (1)求点的直角坐标.(2)设为上任意一点,求的取值范围.【解题指南】(1)利用极坐标的定义求得A,B,C,D的坐标.(2)由方程的参
3、数式表示出|PA|2+ |PB|2 + |PC|2+ |PD|2关于的函数式,利用函数的知识求取值范围.【解析】(1)由已知可得,即 .(2)设令,则 .因为所以的取值范围是.12.(2011新课标全国高考理科23)在直角坐标系xOy中,曲线C1的参数方程为,(为参数),M是C1上的动点,P点满足,P点的轨迹为曲线C2.()求C2的方程.()在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求.【思路点拨】第()问,意味着为的中点,设出点的坐标,可由点的参数方程(曲线的方程)求得点的参数方程;第()问,先求曲线和的极坐标方程,然后通过极坐
4、标方程,求得射线与的交点的极径,求得射线与的交点的极径,最后只需求即可.【精讲精析】(I)设P(x,y),则由条件知M().由于M点在C1上,所以 即 从而的参数方程为,(为参数).()曲线的极坐标方程为,曲线的极坐标方程为.射线与的交点的极径为,射线与的交点的极径为.所以.11.(2014新课标全国卷高考文科数学T23) (2014新课标全国卷高考理科数学T23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为=2cos,.(1)求C的参数方程.(2)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据
5、(1)中你得到的参数方程,确定D的坐标.【解题提示】(1)先求出C的普通方程,然后再化为参数方程.(2)利用C的参数方程设出点D的坐标,利用切线与直线l垂直,可得直线GD与直线l的斜率相同,求得点D的坐标.【解析】(1)C的普通方程为 (0y1).可得C的参数方程为 (t为参数,0t).(2)设D(1+cos t,sin t),由(1)知C是以G(1,0)为圆心,1为半径的上半圆.因为C在点D处的切线与l垂直,所以直线GD与l的斜率相同,tan t=,t=.故D的直角坐标为 ,即 .10.选修4-4:坐标系与参数方程(2015新课标全国卷理科T23)在直角坐标系xOy中,曲线 (t为参数,且t0),其中0,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=2sin ,C3:=2cos .(1)求C2与C3交点的直角坐标.(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【解析】(1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.联立,解得,或.与交点的直角坐标为和 (2)曲线C1的极坐标方程为=(R,0),其中0.因此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职第二学年(旅游服务与管理)旅游产品设计基础测试题及答案
- 2025年高职(机电一体化技术)传感器应用技术综合测试题及答案
- 行政助理职业发展指南
- 社群营销培训课件
- 2026四川巴中市公安局招聘警务辅助人员47人备考题库有完整答案详解
- 2025财达证券股份有限公司资产管理业务委员会招聘2人备考题库及答案详解一套
- 2026四川宜宾铭星中医医院人才招募中医医生、外科医生、编码员备考题库有完整答案详解
- 2026中国科学院软件研究所天基综合信息系统全国重点实验室招聘94人备考题库含答案详解
- 2026浙江温州市广播电视监测中心招聘编外合同制人员1人备考题库参考答案详解
- 2026云南大理州剑川县文化和旅游局招聘2人备考题库及答案详解一套
- 2025年中小学教师正高级职称评聘答辩试题(附答案)
- 现代企业管理体系架构及运作模式
- 2025年江苏省泰州市保安员理论考试题库及答案(完整)
- 公司酶制剂发酵工工艺技术规程
- 2025省供销社招聘试题与答案
- 大数据分析在供热中的应用方案
- 污泥安全管理制度范本
- 开题报告范文基于人工智能的医学像分析与诊断系统设计
- 大黄附子细辛汤课件
- 单位内部化妆培训大纲
- 高校行政管理流程及案例分析
评论
0/150
提交评论