高考概率知识点及例题_第1页
高考概率知识点及例题_第2页
高考概率知识点及例题_第3页
高考概率知识点及例题_第4页
高考概率知识点及例题_第5页
免费预览已结束,剩余20页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、概率知识要点.随机事件的概率随机事件的概率I、必然事件:一般地,把在条件s下,一定会发生的事件叫做相对于条件 S的必然事件。2、不可能事件:把在条件S下,一定不会发生的事件叫做相对于条件S的 不可能事件。3、确定事件:必然事件和不可能事件统称相对于条件S的确定事件。4、随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。5、频数:在相同条件S下重复n次试验,观察某一事件A是否出现,称n 次试验中事件A出现的次数nA为事件A出现的频数。6、频率:事件A出现的比例f (A)= J tl n7、概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.概率的意义1、概率

2、的正确解释:随机事件在一次试验中发生与否是随机的,但随机性 中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事 件发生的可能性。2、游戏的公平性:抽签的公平性。3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那 么“使得样本出现的可能性最大”可以作为决策的准则。极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨 的机会是70%”。5、试验与发现:孟德尔的豌豆试验。6、遗传机理中的统计规律。(概率的基本性质1、事件的关系与运算(1)包含。对于事件A与事件B,如果事件A发生,则事件B一定发生, 称事件B包含事件A (或事件A包含

3、于事件B),记作8 3A(或AnB)。不可能事件记作0。(2)相等。若33AH则称事件A与事件B相等,记作A二B。(3)事件A与事件B的并事件(和事件):某事件发生当且仅当事件A发 生或事件B发生。(4)事件A与事件B的交事件(积事件):某事件发生当且仅当事件A发 生且事件B发生。(5)事件A与事件B互斥:AC8为不可能事件,即馆8=0,即事件A与 事件B在任何一次试验中并不会同时发生。(6)事件A与事件B互为对立事件:AflB为不可能事件,AU8为必然事 件,即事件A与事件B在任何一次试验中有且仅有一个发生。 ¥2、概率的几个基本性质(1) 0<P(A)<l.(2)必然

4、事件的概率为l.P(E) = l.(3)不可能事件的概率为0.尸(尸) = 0.(4)事件A与事件B互斥时,P(A|JB)=P(A)+P(B)概率的加法公式。(5)若事件B与事件A互为对立事件,,则AU8为必然事件,尸(AU8) = 1.古典概型古典概型I1、基本事件:基本事件的特点:(1)任何两个事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本时间 的和。2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。具有这两个特点的概率模型称为古典概型。2 八十 “A、A包含的基本事件的个数3、公式:P(A)=汗砧、,,她基本事件的总数(整数值)

5、随机数的产生如何用计算器产生指定的两个整数之间的取整数值的随机数一一书上例 题。几何概型几何概型1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或 体积)成比例的概率模型。2、几何概型中,事件A发生的概率计算公式:构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)均匀随机数的产生常用的是0川上的均匀随机数,可以用计算器来产生01之间的均匀随机 数。本章知识小结(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一 步了解概率的意义以及频率与概率的区别。(2)通过实例,了解两个互斥事件的概率加法公式。(3)通过实例,理解古典概型及其概率计算

6、公式,会用列举法计算一些随 机事件所含的基本事件数及事件发生的概率。(4) 了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行 模拟)估计概率,初步体会几何概型的意义(参见例3)。(5)通过阅读材料,了解人类认识随机现象的过程。重难点的归纳:重点:1、了解随机事件发生的不确定性和频率的稳定性,正确理解概率的意义.2、理解古典概型及其概率计算公式.3、关于几何概型的概率计算4、体会随机模拟中的统计思想:用样本估计总体.难点:1、理解频率与概率的关系.2、设计和运用模拟方法近似计算概率.13、把求未知量的问题转化为几何概型求概率的问题.(二)高考概率概率考试内容:随机事件的概率.等可能性

7、事件的概率.互斥事件有一个 发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:(1) 了解随机事件的发生存在着规律性和随机事件概率的意义.(2) 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些 等可能性事件的概率。(3) 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式 与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生K次的概率.以下归纳9个常见考点:解析概率与统计试题是高考的必考内容。它是以实际应用问题为载体,以 排列组合和概率统计等知识为工具,以考查对五个概率事件的判断识别及 其概率的计算和随机变量概率分布

8、列性质及其应用为目标的中档师,预计 这也是今后高考概率统计试题的考查特点和命题趋向。下面对其常见题型和考点进行解析。考点1考查等可能事件概率计算。在一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等。如果事件A包含的结果有m个,那么p(a)=竺。这就是等可能事件 n的判断方法及其概率的计n算公式。高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析 和解决实际问题的能力。例1(2004天津)从4名男生和2名女生中任3人参加演讲比赛.(I)求所选3人都是男生的概率;(II)求所选3人中恰有1名女生的概率;(III)求所选3人中至少有1名女生的概率.考点2考查互斥事件至少有一个

9、发生与相互独立事件同时发生概率计算。不可能同时发生的两个事件A、B叫做互斥事件,它们至少有一个发生 的事件为A+B,用概率的加法公式P(A+B)=P(A)+P(B)计算。事件A (或B)是否发生对事件B (或A)发生的概率没有影响,则A、B叫做相互独立事件,它们同时发生的事件为ABo用概率的乘法公式P(AB)=P(A)P(B)计算。高考常结合考试竞赛、上网工作等问题对这两个事件的识别及其概率 的综合计算能力进行考查。例2.(2005全国卷III)设甲、乙、丙三台机器是否需要照顾相互之间没有 影响。己知在某一小时内,甲、乙都需要照顾的概率为,甲、丙都需要照 顾的概率为,乙、丙都需要照顾的概率为,

10、(I )求甲、乙、丙每台机器在 这个小时内需要照顾的概率分别是多少;(II)计算这个小时内至少有一台 需要照顾的概率。考点3考查对立事件概率计算。必有一个发生的两个互斥事件A、B叫做互为对立事件。用概率的减法 公式P(A)4P(A)计算其概率。高考常结合射击、电路、交通等问题对对立事件的判断识别及其概率计算 进行考查。例3. (2005福建卷文)甲、乙两人在罚球线投球命中的概率分别为1和2。2 5(I)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(II)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的 概率;考点4考查独立重复试验概率计算。若n次重复试验中,每次试验结果的概率

11、都不依赖其它各次试验的结 果,则此试验叫做n次独立重复试验。若在1次试验中事件A发生的概率 为P,则在n次独立重复试验中,事件A恰好发生k次的概率为Pn(k)=匕(A)= C/(i p)"3高考结合实际应用问题考查n次独立重复试验中某事件恰好发生k次 的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。例4. (2005湖北卷)某会议室用5盏灯照明,每盏灯各使用灯泡一只, 且型号相同。假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯 泡寿命为1年以上的概率为pl,寿命为2年以上的概率为p2。从使用之日 起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换。¥

12、(I)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡 的概率;(II)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要 更换灯泡的概率;(III)当pl=, p2二时,求在第二次灯泡更换工作,至少需 要更换4只灯泡的概率(结果保留两个有效数字)考点5考查随机变量概率分布与期望计算。解决此类问题时,首先应明确随机变量可能取哪些值,然后按照相互 独立事件同时发生概率的法公式去计算这些可能取值的概率值即可等到分 布列,最后根据分布列和期望、方差公式去获解。以此考查离散型随机变 量分布列和数学期望等概念和运用概率知识解决实际问题的能力。例5.(2005湖北卷)某地最近出台一项机动

13、车驾照考试规定;每位考试 者一年之内最多有4次参加考试的机会,一旦某次考试通过,使可领取驾 照,不再参加以后的考试,否则就一直考到第4次为止。如果李明决定参 加驾照考试,设他每次参加考试通过的概率依次为,一求在一年内李明参 加驾照考试次数1的分布列和的期望,并求李明在一年内领到驾照的概率。 考点6考查随机变量概率分布列与其他知识点结合1、考查随机变量概率分布列与函数结合。例6. (2005湖南卷)某城市有甲、乙、丙3个旅游景点,一位客人游览 这三个景点的概率分别是,且客人是否游览哪个景点互不影响,设£表示 客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。%(I)求W的分布

14、及数学期望;(H)记函数f(x)=x2 33+l在区间2, +-)上单调递增为事件A,求 事件A的概率。2、考查随机变量概率分布列与数列结合。例7甲乙两人做射击游戏,甲乙两人射击击中与否是相互独立事件,规则 如下:若射击一次击中,原射击者继续射击,若射击一次不中,就由对方 接替射击。已知甲乙两人射击一次击中的概率均为7,且第一次由甲开始射 击。(1)求前4次射击中,甲恰好射击3次的概率。(2)若第n次由甲射击的概率为a”,求数列aj的通项公式;求lima”,并 说明极n玲8限值的实际意义。3、考查随机变量概率分布列与线形规划结合。例8 (2005辽宁卷)某工厂生产甲、乙两种产品,每种产品都是经

15、过第一 和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结 果均有A、B两个等级对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品。&(I)己知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所 示,分别求生产出的甲、乙产品为一等品的概P(甲卜P(乙卜(II)己知一件产品的利润如表二所示,用、n分别表示一件甲、乙产品 的利润,在(I)的条件下,求、n的分布列及此、Eq;(III)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人 40名,可用资金60万元。设x、y分别表示生产甲、乙产品的数量,在(II) 的条件下,y为何值时,z=xE +

16、 yEnx最大最大值是多少(解答时须给出图 示)考查随机变量概率分布列性质性质应用考点7考查随机变量概率分布列性质应用。离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.,高考常结合应用问题对随机变量概率分布列及其性质的应用 进行考查。例9(2004年全国高考j)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得。分。假设这名同学每 题回答正确的概率均为,且各题回答正确与否相互之间没有影响求这名同学回答这三个问题的总得分的概率分布和数学期望; 求这名同学总得分不为负分(即Q0)的概率。考点8样本抽样识别与计算。简单随机抽样,系统抽样

17、,分层抽样得共同特点是不放回抽样,且各个体被抽取得概率相等,均为2 (N为总体个体数,n为样本容量)。系统抽 N样、分层抽样的实质分别是等距抽样与按比例抽样,只需按照定义,适用 范围和抽样步骤进行,就可得到符合条件的样本。高考常结合应用问题,考查构照抽样模型,识别图形,搜集数据,处 理材料等研究性学习的能力。例11 (2005年湖北湖北高考题)某初级中学有学生270人,其中一年级 108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查, 考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽 样和分层抽样时,将学生按一、二、三年级依次统一编号为1, 2,270;使用系统

18、抽样时,将学生统一随机编号1, 2,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:7, 34, 61, 88, 115, 142, 169, 196, 223, 250;5, 9, 100, 107, 111, 121, 180, 195, 200, 265; 11, 38, 65, 92, 119, 146, 173, 200, 227, 254;30, 57, 84, 111, 138, 165, 192, 219, 246, 270;关于上述样本的下列结论中,正确的是 ()A.、都不能为系统抽样B.、都不能为分层抽样C.、都可能为系统抽样 D.、都可能为分层抽样考点9考

19、查直方图。这是统计的知识,不是概率的吧 例12.(2005江西卷)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在到之间的学生数为b,则3 b的值分别为()A. 0,27,78 B. 0,27,83 C. ,78 D. ,83方法小结:解决概率问题时,一定要根据有关概念,判断问题是否是等可能性事件、 互斥事件、相互独立事件,还是某一事件在n次独立重复试验中恰好发生k 次的情况,以便选择正确的计算方法,同时注意上述各类事件的综合问题, 要全面考虑

20、,特别是近几年高考概率与期望的综合,体现了高考对概率知 识要求的进一步提高。下面仅以几个例题作以小结。一、用排列组合求概率例1从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数, 这个三位数不能被3整除的概率为()(A)19 乃 4(B)3Hs(C)3 的 4(D)41y60分析:等可能事件的概率关键是利用排列组合出基本事件数。答案:B点评:本题将等可能事件与对立事件的概率,以及分类讨论综合在一起, 体现了知识交汇点的命题精神,是高考的热点。二、互斥事件有一个发生的概率例2某厂生产A产品,每盒10只进行包装,每盒产品都需要检验合格后才能 出厂,规定以下,从每盒10只中任意抽4只进行

21、检验,如果次品数不超过1只, 就认为合格,否则就认为不合格,己经知道某盒A产品中有2只次品(1)求该盒产品被检验合格的概率(2)若对该盒产品分别进行两次检验,求两次检验的结果不一致的概率 分析:对一个复杂事件的概率可以分拆成几个互斥事件的概率或者转化为 求其对立事件的概率。点评:求相互独立事件同时发生的概率,要保证两者确是“相互独立”事 件。本例的“比赛型”题,分析比较简单,只要结合有关比赛规则即可解 决,此类题也是高考的热点题。三、对立重复试验例3 一位学生每天骑自行车上学,从他家到学校有5个交通岗,假设他在交通 岗遇到红灯是相互独立的,且首末两个交通岗遇到红灯的概率均为p,其余3 个交通岗

22、遇到红灯的概率均为1。2若p二弟,求该学生在第三个交通岗第一遇到红灯的概率;(2)若该学生至多遇到一次红灯的概率不超过18,求p的取值范围。分析:首末两个交通岗遇红灯的概率相同,其余3个交通岗遇红灯的概率 也相同,可看作独立重复试验。点评:要注意恰有k次发生和某指定的k次发生的差异。对独立重复试验 来说,前者的概率为总结:概率初步的考题一般以(1)等可能事件;(2)互斥事件有一个发生;(3)相互独立事件同时发生;(4)独立重复试验为载体。有的考题可能综 合多个概率题型;在等可能事件的概率计算中,关键有二:一是谁是一次 试验(一次事件所含的基本事件的总数);二是事件A所含基本事件数。当 然,所有

23、基本事件是等可能的是前提;善于将复杂的事件分解为互斥事件 的和与独立事件的积是解题的关键。(三)高考数学概率中的易错题辨析一、概念理解不清致错例1.抛掷一枚均匀的骰子,若事件A: “朝上一面为奇数”,事件B:“朝上一面的点数不超过3",求P (A+B)错误解法1:事件A:朝上一面的点数是1, 3, 5;事件B:超上一面的点数为 1, 2, 3, AP (A+B) =P (A) +P (B) =- + - = - 6 6 2错因分析:事件A:朝上一面的点数是1, 3, 5;事件B:越上一面的点数为1, 2, 3,很明显,事件A与事件B不是互斥事件。即P (A+B) WP (A) +P

24、(B),所以上解是错误的。实际上:正确解法为:A+B包含:朝上一面的点数为1, 2, 3, 5四种情况AP (A+B) =- = - 6 3错误解法2:事件A:朝上一面的点数为1, 3, 5;事件B:朝上一面的点数为1, 2, 3,即以A、B事件中重复的点数1、3AP (A+B)=P (A) +P (B) -P (A B)11113二+x=2 2 2 2 4错因分析:A、B事件中重复点数为1、3,所以P (A-B)这种错 6误解法在于简单地类比应用容斥原理Card (A U 8) = Card (A) + Card (B) - Card(A A B)致错正确解答:P (A+B) =P (A)

25、+P (B) -P (A B).112 2+ =-1,(当第次掷出偶黝-1,(当第次掷出奇数)'2 2 6 3例2.某人抛掷一枚均匀骰子,构造数列询,使% = 记S, =%+%+ +* 求S, > 0(/ = 1,234)且4 = 2的概率。错解:记事件A: 4=2,即前8项中,5项取值1,另3项取值一1-* 58 = 2 的概率 P(A) = Cg . (1)8记事件B: S* >0(/ = 123,4),将S >0(/ = 123,4)分为两种情形:(1)若第1、2项取值为1,则3, 4项的取值任意(2)若第1项为1,第2项为-1,则第3项必为1第四项任意AP(B

26、)=(1)2+(1)3=1,所求事件的概率为P=P(A) P (B) =2 o 2错因分析:SjNO且凡=2是同一事件的两个关联的条件,而不是两个相互独立事件。51之0对4=2的概率是有影响的,所以解答应为:正解:: S, >0(/ = 1,23,4)J前4项的取值分为两种情形若1、3项为1;则余下6项中3项为1,另3项为-1即可。即勺=ct(1)8;若1、2项为正,为避免与第类重复,则第3项必为-1,则后5项中只须3项为1,余下2项为-1,即尸2=,(;)8,所求事件的概率为八c+) 4)8 =母二、有序与无序不分致错例3.甲、乙两人参加普法知识竞赛,共有10个不同的题目,其中选择题6

27、个,判断题4个,甲、乙依次各抽一题。求:(1)甲抽到选择题,乙提到判断题的概率是多少(2)甲、乙两人中至少有1人抽到选择题的概率是多少错误解法:(1)甲从选择题抽到一题的结果为以乙从判断题中抽到一题的结果为C:而甲、乙依次抽到一题的结果为G?。,所求概率为:宣错因分析:甲、乙依次从10个题目各抽一题的结果,应当是先选后排, 所以应为娠。为避免错误,对于基本事件总数也可这样做:甲抽取一道题 目的结果应为C;。种,乙再抽取余下的9道题中的任一道的结果应为C;种, 所以正确解答:器4(2)错误解法:从对立事件考虑,甲、乙都抽到判断题的结果为。:种, 所以都抽到判断题的概率为,所求事件的概率为1_工=

28、8C;oC; 1515 15错因分析:指定事件中指明甲、乙依次各抽一题,那么甲、乙都提到 判断题的结果应为种,所以所求事件概率应为券=2说明:对于第(2)问,我们也可以用这样解答:这里启示我们,当基本事件是有序的,则指定事件是有序的 .o 15(指定事件包含在基本事件中);当基本事件是无序的,则指定事件也必无 序。关键在于基本事件认识角度必须准确。例4.己知8支球队中有3支弱队,以抽签方式将这8支球队分为A、 B两组,每组4支,求:A、B两组中有一组恰有两支弱队的概率。错解:将8支球队均分为A、B两组,共有种方法:A、B两组中 有一组恰有两支弱队的分法为:先从3支弱队取2支弱队,又从5支强队

29、取2支强队,组成这一组共有。久;种方法,其它球队分在另一组,只有一 种分法。,所求事件的概率为:=错因分析:从基本事件的结果数来看,分组是讲求顺序的,那么指定 事件:"A、B组中有一组有2支弱队”应分为两种情形。即“A组有”或“B 组有”,所以正确解答为:I正解:笛华=9或二说明:这道题也可从对立事件求解:3支弱队分法同一组共有:种结果。,所求事件概率为1-与f=97三、分步与分类不清致错例5.某人有5把不同的钥匙,逐把地试开某房门锁,试问他恰在第3 次打开房门的概率错误解法:由于此人第一次开房门的概率为9若第一次未开,第2 次能打开房门的概率应为:;所以此人第3次打开房门的概率为g

30、o43错因分析:此人第3次打开房门实际是第1次未打开,第2次未打开, 第3次打开“这三个事件的积事件”,或者理解为“开房门是经过未开、 未开、开”这三个步骤,不能理解为此事件只有“开房门”这一个步骤, 所以,正确解答应为:正解:第1次未打开房门的概率为:;第2次未开房门的概率为第543次打开房门的概率为"所求概率为:P = ix2xi=lo35 4 3 5例5.某种射击比赛的规则是:开始时在距目标100m处射击,若命中 记3分,同时停止射击。若第一次未命中,进行第二次射击,但目标已在 150m远处,这时命中记2分,同时停止射击;若第2次仍未命中,还可以进行第3次射击,此时目标已在20

31、0m远处。若第3次命中则记1分,同时 停止射击,若前3次都未命中,则记。分。己知身手甲在100m处击中目标 的概率为,他命中目标的概率与目标的距离的平方成反比,且各次射击都 是独立的。求:射手甲得k分的概率为Pk,求P3, P2, %,Po的值。:设射手射击命中目标的概率P与目标距离x之间的关系为P = 土,由已知 - = ->=5000 x22 1002错误解法:p.=l 2n 5000 24的=0n 5000 1 -=一2002 812149尸。=。-/-补才市错因分析:求P2时,将第150m处射击命中目标的概率作为第2次命 中目标的概率,隔离了第1次射击与第2次射击的关系,实际上,

32、第2次 射击行为的发生是在第1次未击中的前提下才作出的。P2应为“第1次未击中,第2次击中”这两个事件的积事件的概率。求P1时也如此。正解:玛毛49144四、考虑不周致错例6.某运动员射击一次所得环数x的分布列如下:10P现进行两次射击,以该运动员两次射击中最高的环数作为他的成绩记 为求:孑的分布列。错误解法:J的取值为8, 9, 10o57,两次环数为7,7;k8,两次 成绩为7, 8或8, 8:分9,两次成绩7, 9或8, 9或9, 9; =10,两次 队数为7, 10或8, 10或9, 10或10, 10o/ P( = 7) = 0.2x0.2 = 0.04P(J = 8) = 0.2x

33、0.3 + 0.32 =0.15P 记=9) = 0.2 x 0.3 + 0.3 x 0.3 + 0.32 = 0.23P(& = 10) = 0.2 x 0.3 0.2 + 0.3 0.3 + 0.22 = 0.2(分布列略)错因分析:j = 8,即两次成绩应为7, 8或8, 7或8, 8实际为三种情形, PR = 8) = 2x0.2x0.3 + 0.32 =0.21J=9两次环数分别为7,9 (或9,7 ) ; 8,9 (或9,8 ) , P 化= 9) = 2x 0.2 x0.3 + 2x 0.3 x 0.3 + O.32 = 0.39Hgp( = 10) = 0.122 x2

34、 + 0.3x0.2x4 + 0.22 =0.36例7.将n个球等可能地放入到N (nXn)个有编号的盒子中(盒子中 容纳球的个数不限)。求A:某指定的n个盒子中恰有一球的概率。错误解法:将n个球等可能地放入到N个盒子中,共有W种方法。而指定的n个盆中各有一球的放法有:n!种,则所求概率:p(a)=工错因分析:这种解法不全面,如果球是有编号的,则答案是对的。若球是不可辨认的,则答案错了,若球是不可辨认的,则若考虑盒子中球的 个数而不考虑放的是哪几个球,为此,我们用“口”表示一个盒子;用 表示一个球,先将盒子按编号1345n2把n个球放入N中盒子中,形如:101001110001,正好看作N+1

35、个“1”和n个“0”的全排列。由于两边必为“1”所以排法只有累.1种; 而指定的n个盒子中恰有一球的放法只有1种,故尸(a)= 二=半上工以皿(抵+!五、混淆“互斥”与“独立”出错例8.甲投篮命中概率为,乙投篮命中概率为,每人投3次,两人恰好 都命中2次的概率是多少错解:设“甲恰好投中2次”为事件A, “乙恰好投中2次”为事件B, 则两人恰好投中2次为A+Bo所以 P (A+B) =P (A) +P (B)=60.82x0.2+ C;0.7晨0.3 = 0.825。错因分析:本题解答错误的原因是把相互独立同时发生的事件当成互 斥事件来考虑。将两人都恰好投中2次理解为“甲恰好投中2次”与“乙 恰

36、好投中2次”的和。正解:设“甲恰好投中2次”为事件A, “乙恰好投中2次”为事件B, 则两人恰好都投中2次为ABo所以 P ( AB) =P (A) XP (B) = Cj 0.82 x 0.2 x C3 0.7 2 x 0.3 = 0.169六.混淆有放回与不放回致错例9.某产品有3只次品,7只正品,每次取1只测试,取后不放回,求:(1)恰好到第5次3只次品全部被测出的概率;(2)恰好到第k次3只次品全部被测出的概率/(幻的最大值和最小值。错解:(1) p (a) =2_2.m=_L 10 9 8 7 6 144(2)心历(1-历厂=0.21。错因分析:错解(1)的错误的原因在于忽视了 “不

37、放回摸球”问题的 每一次摸球是不独立的;而错解(2)的错误的原因则在于忽视了 “不放回摸球”问题的每一次摸球袋内球的总数是变的(比前一次少一个)。正解:5120二1 厂氏一 3 a(2)P ='-d)"2),(3KE0,&eZ)240当& =3 时,/伏)min=3) =击;当我 =3 时,f(k) max = f (10) = ©一、选择2 .(福建理5)某一批花生种子,如果每1粒发牙的概率为二那么播下4粒种子恰有2粒发芽的概率是A.提96 c 192625. 625D.256625解:独立重复实验8(4,3,尸伙=2)=得偿=黑5 5 / 5 y

38、 625那么播下3481253 .(福建文5)某一批花生种子,如果每1粒发芽的概率为% 粒种子恰有2粒发芽的概率是解:这是独立重复实验,服从二项分布8(3二),尸(X=2) = C;0515,¥一年级二年级三年级女生373Xy男生377370Z各年级男、女生人数如表1.已知4 .(广东理3)某校共有学生2000名, 在全校学生中随机抽取1名,抽到二 年级女生的概率是.现用分层抽样的方 法在全校抽取64名学生,则应在三年 级抽取的学生人数为(C)A. 24B. 18C. 16D. 12解:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应 该是500,即总体中各个年级的人数比例为3:3:2,故在分层抽样中应在三 年级抽取的学生人数为64x2 = 1686.(江西理11文11)电子钟一天显示的时间是从00:00到23:59的每一时 刻都由四个数字组成,则一天中任一时刻的四个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论