曲线的参数方程_第1页
曲线的参数方程_第2页
曲线的参数方程_第3页
曲线的参数方程_第4页
曲线的参数方程_第5页
免费预览已结束,剩余9页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、曲线的参数方程教学目标:1 .通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体 会参数的意义。2 .分析圆的几何性质,选择适当的参数写出它的参数方程。3 .会进行参数方程和普通方程的互化。教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。参数方程和普通方程的互化。教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。参数方程和普通方程的等价 互化。教学过程一.参数方程的概念1 .探究:如图,一架救援飞机在离灾区地面 500m的高处以100m/s的速度作水平直线飞行,为使投放 的救援物资准确落于灾区指定的地面(不计空气阻力),飞行员应如何确定投放

2、时机呢?(1)平抛运动:一、方程组有3个变量,其中的x,y表示点的坐标,变量t叫做参变量,而且x,y分别是t的 函数。二、由物理知识可知,物体的位置由时间 t唯一决定,从数学角度看,这就是点 M的坐标x,y 由t唯一确定,这样当t在允许值范围内连续变化时,x,y的值也随之连续地变化,于是就可 以连续地描绘出点的轨迹。、平抛物体运动轨迹上的点与满足方程组的有序实数对( x,y)之间有一一对应关系练习:斜抛运动:v=vo2 .参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x#,y都是某个变数t的函数并且对于t的每一个允许值,由方程组(2)所确定的点询&y)都在这条曲线上,那么方

3、程(2) 就叫做这条曲线的参数方程,联系变数 x,y的变数tj麻参变瓢简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。0 说明:(1) 一般来说,参数的变化范围是有限制的(2)参数是联系变量x, y的桥梁,可以有实际意义,也可无实际意义x 3t例1 .已知曲线C的参数万程是 9 (t为参数) y 2t2 1(1)判断点M1(0,1),M2(5,4)与曲线C的位置关系;(2)已知点M3(6,a)在曲线C上,求a的值。A、一个定点B、一个椭圆 C、一条抛物线 D、一条直线二.圆的参数方程圆的参数方程的一般形式说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线

4、是相同(2)在建立曲线的参数方程时,要注明参数及参数的取值范围三.参数方程和普通方程的互化例1、已知圆方程x2+y2 +2x-6y+9=0,将它化为参数方程。解:x2+y2+2x-6y+9=0化为标准方程,(x+1) 2+ (y-3) 2=1 ,参数方程为(8为参数)例2 如图,圆。的半径为2, P是圆上的动点,Q(6,0)是x轴上的定点,M是PQ的中点, 当点P绕O作匀速圆周运动时,求点 M的轨迹的参数方程。明确参数方程和普通方程的互化的方法。注意,在参数方程和普通方程的互化中,必须使 x, y的取值范围保持一致。四.课堂练习巩固与提高1.与普通方程xy=1表示相同曲线的参数方程(t为参数)

5、是(D)A.x t2B.x sinty csctC.1x tant D.y cott2,下列哪个点在曲线 x sin (为参数)上(C)y cos 2A. (2,7)B. (-,-)C.()3 32 23 .曲线x 1 CO2s2(为参数)的轨迹是(D)y sinA. 一条直线 B. 一条射线C. 一个圆4 .方程 x 2(为参数)表示的曲线是(D)y cosD.(1,0)D.条线段A.余弦曲线B.与x轴平行的线段C.直线D.与y轴平行的线段5.曲线x cos (为参数)上的点到两坐标轴的距离之和的最大值是(D) y sinA. ;(t为参数)的普通方程为x2y2 4。B.整C. 1 D.V2

6、226.方程xt10.已知x 2 cos (为参数),则(x 5)2 (y 4)2的最大值是6。 y sin11.设飞机以匀速v=150m/s作水平飞行,若在飞行高度h=588m处投弹(设投弹的初速度等 于飞机的速度,且不计空气阻力)。 y2 4tx 2ty 5t2 4 0 (t为参数)所表示的一族圆白圆心轨迹是(D)7.A.A. 一个定点直线x tcos y t sinM或5r 66B. 一个椭圆(为参数)与圆x 4 2 cosy 2sin8.曲线x22y的一个参数方程为xyC. 一条抛物线D. 一条直线为参数)相切,那么直线的倾斜角为(A)cos (为参数)o1 sin9.x曲线y(1)求

7、炸弹离开飞机后的轨迹方程;(2)试问飞机在离目标多远(水平距离)处投弹才能命中目标。解:(1) x 150t 2 为参数)。y 588 4.9t(2) 1643m。12 .火炮以 为发射角,vo为初速度发射,求炮弹的轨迹方程。解:yXVo cos t,1 ,2(t为参数)。yoSin t gt213 .动点M从起点Mo(1,2)出发作等速直线运动,它在x轴与y轴方向上的分速度分别为6和 8,求点M的轨迹的参数方程。解:x 1 6t (t为时间参数)。y 2 8t14 .求直线X 1 t (t为参数)与圆x2 y2 4的交点坐标。 y 1 t解:把直线的参数方程代入圆的方程,得(1+t)2+(1

8、-t)2=4相t=1,分别代入直线方程,得交 点为(0, 2)和(2, 0)。圆的参数方程的应用教学目标:知识与技能:利用圆的几何性质求最值(数形结合)过程与方法:能选取适当的参数,求圆的参数方程教学重点:会用圆的参数方程求最值。教学难点:选择圆的参数方程求最值问题.教学过程:一、最值问题1 .已知 P (x,y )圆 C: x2+y2 6x 4y+12=0 上的点。y(1)求 一 的最小值与最大值(2)求x y的最大值与最小值x2 .圆x2+y2=1上的点到直线3x+4y-25=0的距离最小值是 ;2/.圆(x-1) 2+(y+2) 2=4上的点到直线2x-y+1=0的最短距离是;3 .过点

9、(2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦:为最长的直线方程是 ;为最短的直线方程是;4 .若实数x,y满足x2+y2-2x+4y=0 ,则x-2y的最大值为; 二、参数法求轨迹1) 一动点在圆x2+ y2=1上移动,求它与定点(3,0)连线的中点的轨迹方程2)已知点A(2,0),P是x2+y2=1上任一点, AOP的平分线交PA于Q点,求Q点的轨迹.C.参数法解题思想:将要求点的坐标x,y分别用同一个参数来表示例题:1)点P(m,n)在圆x2+y2=1上运动,求点Q(m+n,2mn)勺轨迹方程2)方程x2+y2-2(m+3)x+2(1-4m 2)y+16m4+9=0.若该方程

10、表示一个圆,求m的取值范围和圆心的 轨迹方程。圆锥曲线的参数方程教学目的:知识与技能:了解圆锥曲线的参数方程及参数的意义过程与方法:能选取适当的参数,求简单曲线的参数方程情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。教学重点:圆锥曲线参数方程的定义及方法教学难点:选择适当的参数写出曲线的参数方程.授课类型:新授课教学模式:启发、诱导发现教学.教学过程:一、复习引入:1 .写出圆方程的标准式和对应的参数方程。x r cos圆x2 y2 r2参数方程(为参数)y r sin x x r cos(2)圆(x xo)2 (y yo)2 r2参数方程为:0(为参数)y Vo r s

11、in2 .写出椭圆、双曲线和抛物线的标准方程。3 .能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗?、讲解新课:1 .椭圆的推导:椭圆1参数方程x acos y bsin为参数)2 .双曲线的参数方程:双曲线2 x -2 a2 y b21参数方程x a sec y btan为参数)3 .抛物线的参数方程:抛物线y22 Px参数方程x2Pt2(t为参数)y 2Pt1、关于参数几点说明:(1)参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。(2)同一曲线选取的参数不同,曲线的参数方程形式也不一样(3)在实际问题中要确定参数的取值范围2、参数方程的意义:参数方程是曲线点的位置的另一种

12、表示形式,它借助于中间变量把曲线上的动点的两个坐 标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程 组,其中x , y分别为曲线上点M的横坐标和纵坐标。3、参数方程求法(1)建立直角坐标系,设曲线上任一点 P坐标为(x,y)(2)选取适当的参数(3)根据已知条件和图形的几何性质,物理意义,建立点P坐标与参数的函数式(4)证明这个参数方程就是所由于的曲线的方程4、关于参数方程中参数的选取选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t做参数与旋转的有关问题选取角 做参数或选取有向线段的数量、长度、直线的倾斜斜角、斜率等

13、。二、典型例题:例1 .设炮弹发射角为 ,发射速度为v0 ,(1)求子弹弹道曲线的参数方程(不计空气阻力)(2)若Vo 100m/s, 一,当炮弹发出2秒时,6求炮弹高度求出炮弹的射程例2,求椭圆的参数方程(见教材)22椭圆xr冬1参数方程(为参数)a by bsinx 3cos变式训练1.已知椭圆(为参数)y 2sin求(1)至时对应的点P的坐标(2)直线OP的倾斜角变式训练2 A点椭圆长轴一个端点,若椭圆上存在一点 P,使/OPA=90 ,其中。为椭 圆中心,求椭圆离心率e的取值范围。例3.把圆x2 y2 6x 0化为参数方程(1)用圆上任一点过原点的弦和x轴正半轴夹角 为参数(2)用圆中

14、过原点的弦长t为参数三、巩固与练习四、小结:本节课学习了以下内容:1 .选择适当的参数表示曲线的方程的方法;2 .体会参数的意义五、课后作业:教材P圆锥曲线参数方程的应用教学目的:知识与技能:利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题过程与方法:选择适当的参数方程求最值。情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。教学重点:选择适当的参数方程求最值。教学难点:正确使用参数式来求解最值问题授课类型:新授课教学模式:讲练结合教学过程:一、复习引入:通过参数 简明地表示曲线上任一点坐标将解析几何中以计算问题化为三角问题,从而运用三角性质及变换公式帮助求解诸如最值,

15、参数取值范围等问题。二、讲解新课:例1.求椭圆的内接矩形面积的最大值变式训练122椭圆x2 4 1 (a b 0)与x轴正向交于点A,若这个椭圆上存在点P,使OPLAP, a2 b2(O为原点),求离心率e的范围。 22例2. AB为过椭圆、匕1中心的弦,F1,F2为焦点,求 ABF1面积的最大值。25 16例3.抛物线y2 4x的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三 角形的周长。例4、过P (0, 1)到双曲线x2 y2 1最小距离变式训练2:2设P为等轴双曲线x2 y2 1上的一点,F1, F2为两个焦点,证明F1P F2 P OP例5,在抛物线y2 4ax(a 0

16、)的顶点,引两互相垂直的两条弦 OA, OB,求顶点。在AB上射影H的轨迹方程。三、巩固与练习四、小 结:本节课学习了以下内容:适当使用参数表示已知曲线上的点用以求最值问题五、课后作业:直线的参数方程教学目的:知识与技能:了解直线参数方程的条件及参数的意义过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识 教学重点:曲线参数方程的定义及方法教学难点:选择适当的参数写出曲线的参数方程.授课类型:新授课教学模式:启发、诱导发现教学.一、复习引入:1.写出圆方程的标准式和对应的参数方程。圆x2xy2 r2参数方程yr c

17、osr sin为参数)(2)圆(x Xo)2 (y y。)2r2参数方程为:x x0 r cosy V。 r sin为参数)3复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程?、讲解新课:1、教师引导学生推导直线的参数方程:过定点P(xo, yo)倾斜角为 的直线的参数方程x x0 tcosy y0 tsint 为参数)2、辨析直线的参数方程:T 的几何意义是指它表示点P0P 的长,带符号 .三、直线的参数方程应用:课本例题,此略.四、小结:( 1)直线参数方程求法( 2)直线参数方程的特点( 3)根据已知条件和图形的几何性质,注意参数的意义参数方程与普通方程互化

18、教学目的:知识与技能:掌握参数方程化为普通方程几种基本方法过程与方法:选取适当的参数化普通方程为参数方程情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。教学重点:参数方程与普通方程的互化教学难点:参数方程与普通方程的等价性授课类型:新授课教学模式:启发、诱导发现教学.教学过程:一、复习引入:( 1)圆的参数方程( 2)椭圆的参数方程二、讲解新课:1、参数方程化为普通方程的过程就是消参过程常见方法有三种:(1)代入法:利用解方程的技巧求出参数t,然后代入消去参数( 2) 三角法:利用三角恒等式消去参数( 3) 整体消元法:根据参数方程本身的结构特征,从整体上消去。化参数方程为

19、普通方程为F(x,y) 0:在消参过程中注意变量x、y取值范围的一致性,必须根据参数的取值范围,确定f(t)和g值域得x、y的取值范围。2、常见曲线的参数方程x rcos(1)圆x2 y2 r 2参数方程(为参数)y rsinx x rcos2)圆 (x x0)2 (y y0)2r 2参数方程为:0( 为参数)y y0 rsin22椭圆0 -1参数方程(为参数)a2 b2y bsin22(4)双曲线、y- 1参数方程a2b2x(5)抛物线y2 2Px参数方程yx asec / 4公粉、(为参数)y btan2Pt22Pt (t为参数)2Ptx x0 tcos y yo tsin(t为参数)典型

20、例题1、将下列参数方程化为普通方程(1)t2t22t(2)x siny sin 2cos22t2x(4)y21 t22t1 t2(5)12(t -)213(t)变式训练12、(1)方程 x ty 2表示的曲线A、一条直线B、两条射线(2)下列方程中,当方程y2C、条线段x表示同一曲线的点A、x ty t2x sin21B、y sin tc x 11C、 y tD、D、抛物线的一部分1 xos2t x1 cos2t tant例2化下列曲线的参数方程为普通方程,并指出它是什么曲线。(1)1 2 . t _ 一 (t是参数)3 4 .t(2)x 2 cosy cos 2是参数)(3)Jt1 2t1

21、2t2(t是参数)(6)过定点P(x0,y。)倾斜角为的直线的参数方程x 4sin变式训练2。P是双曲线(t是参数)上任一点,Fi, F2是该焦点:y 3tan求aFiF2的重心G的轨迹的普通方程。例3、已知圆O半径为1, P是圆上动点,Q (4, 0)是x轴上的定点,M是PQ的中点,当点P绕O作匀速圆周运动时,求点 M的轨迹的参数方程。变式训练3:已知P(x,y)为圆(x 1)2 (y 1)2 4上任意一点,求x y的最大值和最小值。三、巩固与练习四、小结:本节课学习了以下内容:熟练记忆把参数方程化为普通方程的几种方法。五、课后作业:见教材53页.5圆的渐开线与摆线教学目的:知识与技能:了解圆的渐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论