




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、口诀的形式来记忆初中数学知识点公式1. 加法运算之有理数:异号相加 ”大减小”,同号相加一边倒;绝对值相等”零正好;符号跟着大的跑。注意,这里的大减小针对的是绝对值相加减。1. 合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。2. 去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不 变号,括号前面是负号,去、添括号都变号。3. 一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要 颠倒。4. 恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=- (b-a) 2n+1 ( a-b) 2n= (
2、b-a)2n5. 平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全 公式相混淆。6. 完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央; 首土尾括号带平方,尾项符号随中央。7. 因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项), 就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上 若都行不通,拆项、添项看清楚。8. 代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它 带上小括弧,原括弧内出(现)括弧,逐级向下变括
3、弧(小 -中-大)9. 单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运) 算,指数运算降级(进)行。10. 一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合 并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。11. 一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小, 小大无处找。12. 一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。13. 分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行
4、运算;加减分母 需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求 最简。14. 分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根) 留、增(根)舍别含糊。15. 最简根式的条件:最简根式三条件,号内不把分母含,幕指(数)根指(数)要互 质,幕指比根指小一点。16. 特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和什,-),四个象限分前后;X轴上y为0,x为0在Y轴。17. 象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四 横纵确相反。18. 平行某轴的直线:平行某轴的直线,点的坐
5、标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于 Y轴,点的横坐标仍照旧。19. 对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。20. 自变量的取值范围:分式分母不为零,偶次根下负不行;零次幕底数不为零,整 式、奇次根全能行。21. 函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀左右平移在括号,上下平移在末稍, 左正右负须牢记,上正下负错不了”。22. 一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点
6、一直线;两个系数 k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来 相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。23. 二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由 a断,c与Y轴来相见,b的符号较特别,符号与 a 相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称 轴位置,符号反,一般、顶点、交点式,不同表达能互换。24. 反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远
7、;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别 减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。25. 巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明 的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。26. 三角函数的增减性:正增余减27. 特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子
8、记口诀123,321,三九二十七”既可。28.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分”跑不了 ”,对角相等也有用,两组对角”才能成。28. 梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在” ”现;延长两腰交一点,” 中有平行线;作出梯形两高线,矩形显示在眼前; 已知腰上一中线,莫忘作出中位线。29. 添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可 向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中 位线;三角形中有中线,延
9、长中线翻一番。30. 圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分 弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还 有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆 周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形, 对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个 辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端, 直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有 内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两
10、圆相切作公切, 两圆相交连公弦。31. 圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比 来代替,遇等比,改等积,弓I用射影和圆幕,平行线,转比例,两端各自找联系。32. 正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正 n边形在眼前.33. 经过分点做切线,切线相交 n个点.n个交点做顶点,外切正 n边形便出现.正n 边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果 n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角 三角形2n个整,
11、依此计算便简单.34. 函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向 上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,的符号最简便,x轴上 数交点,a、b同号轴左边抛物线平移 a不变,顶点牵着图象转,三种形式可变换, 配方法作用最关键。初中数学知识口诀大全C3用平方差公式因式分解异号两个平方
12、项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程左未右已先分离,二系化“ 1”是其次一系折半再平方,两边同加没
13、问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势。【注】恒等式解一元二次方程方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别判断正比例函数,检验当分两步走。一量表示另一量,是与否。若有还要看取值,全体实数都要有。正比例函数是否,辨别需分两步走。一量表示另一量,有没有。若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两
14、步走。一量表示另一量,是与否。若有还要看取值,全体实数都要有。正比例函数的图象与性质正比函数图直线,经过和原点K正一三负二四,变化趋势记心间。K 正左低右边高,同大同小向爬山。K 负左高右边低,一大另小下山峦。一次函数一次函数图直线,经过点。K 正左低右边高,越走越高向爬山。K 负左高右边低,越来越低很明显。K 称斜率 b 截距,截距为零变正函反比例函数反比函数双曲线,经过点。K 正一三负二四,两轴是它渐近线。K 正左高右边低,一三象限滑下山。K负左低右边高,二四象限如爬山。二次函数二次方程零换y,二次函数便出现。全体实数定义域,图像叫做抛物线抛物线有对称轴,两边单调正相反。 A 定开口及大小
15、,线轴交点叫顶点。 顶点非高即最低。上低下高很显眼。 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,平移规律记心间。 左加右减括号内,号外上加下要减。 二次方程零换y,就得到二次函数。图像叫做抛物线,定义域全体实数。 A 定开口及大小,开口向上是正数。 绝对值大开口小,开口向下 A 负数 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 如果要画抛物线,描点平移两条路。 提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。【注】基础抛物线直线、射线与线段直线射线
16、与线段,形状相似有关联。直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。角一点出发两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。直平之间是钝角,平周之间叫优角。互余两角和直角,和是平角互补角。一点出发两射线,组成图形叫做角平角反向且共线,平角之半叫直角平角两倍成周角,小于直角叫锐角。钝角界于直平间,平周之间叫优角。和为直角叫互余,互为补角和平角。证等积或比例线段等积或比例线段,多种途径可以证。证等积要改等比,对照图形看特征。共点共线线相交,平行截比把题证。三点定型十分像,想
17、法来把相似证。图形明显不相似,等线段比替换证。换后结论能成立,原来命题即得证。实在不行用面积,射影角分线也成。只要学习肯登攀,手脑并用无不胜。解无理方程一无一有各一边,两无也要放两边。乘方根号无踪迹,方程可解无负担。两无一有相对难,两次乘方也好办。 特殊情况去换元,得解验根是必然。解分式方程先约后乘公分母,整式方程转化出。特殊情况可换元,去掉分母是出路。求得解后要验根,原留增舍别含糊。列方程解应用题列方程解应用题,审设列解双检答。审题弄清已未知,设元直间两办法。列表画图造方程,解方程时守章法。检验准且合题意,问求同一才作答。添加辅助线学习几何体会深,成败也许一线牵。 分散条件要集中,常要添加辅助线。 畏惧心理不要有,其次要把观念变。 熟能生巧有规律,真知灼见靠实践。图中已知有中线,倍长中线把线连。旋转构造全等形,等线段角可代换。多条中线连中点,便可得到中位线。倘若知角平分线,既可两边作垂线。也可沿线去翻折,全等图形立呈
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025正规的公寓式商品房租赁合同样本
- 皮脂腺异位医学科普
- 生命支持类设备管理
- 班级布置专项培训方案
- 透析患者水分控制的管理
- 房地产电商营销模式研究报告(专业版)
- 2025年通勤驾驶员安全培训试题
- 第二课时:数字的变化规律教学设计
- 认识新质生产力
- 物理化学电子教案-第十一章
- 2025年护士考试心理健康试题及答案
- 旅游法规教程试题及答案
- 2025届天津市十二区重点学校高三下学期毕业联考(一)英语试题(含答案)
- 《陆上风电场工程概算定额》NBT 31010-2019
- 生物医学电子学智慧树知到期末考试答案章节答案2024年天津大学
- 干部人事档案转递单表样
- 关于中国文化遗产北京故宫的资料
- 2023年版一级建造师-水利工程实务电子教材
- 新中考考试平台-考生端V2.0使用手册
- 诊所备案申请表格(卫健委备案)
- 水上交通事故报告书(英文)
评论
0/150
提交评论