




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、华师大版八年级上册第12章 整式的除法2014年单元测试卷一、选择题(每小题3分,共30分)1(3分)(2012苏州)若3×9m×27m=321,则m的值为()A3B4C5D62(3分)(1998宁波)要使多项式(x2+px+2)(xq)不含关于x的二次项,则p与q的关系是()A相等B互为相反数C互为倒数D乘积为13(3分)若|x+y+1|与(xy2)2互为相反数,则(3xy)3的值为()A1B9C9D274(3分)若x2kxy+9y2是一个两数和(差)的平方公式,则k的值为()A3B6C±6D±815(3分)已知多项式(17x23x+4)(ax2+bx
2、+c)能被5x整除,且商式为2x+1,则ab+c=()A12B13C14D196(3分)(2011南昌)下列运算正确的是()Aa+b=abBa2a3=a5Ca2+2abb2=(ab)2D3a2a=17(3分)若a4+b4+a2b2=5,ab=2,则a2+b2的值是()A2B3C±3D28(3分)下列因式分解中,正确的是()Ax2y2z2=x2(y+z)(yz)Bx2y+4xy5y=y(x2+4x+5)C(x+2)29=(x+5)(x1)D912a+4a2=(32a)29(3分)设一个正方形的边长为1cm,若边长增加2cm,则新正方形的面积增加了()A6cm2B5cm2C8cm2D7c
3、m210(3分)(2009内江)在边长为a的正方形中挖去一个边长为b的小正方形(ab)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A(a+b)2=a2+2ab+b2B(ab)2=a22ab+b2Ca2b2=(a+b)(ab)D(a+2b)(ab)=a2+ab2b2二、填空题(每小题3分,共24分)11(3分)(2009北京)若把代数式x22x3化为(xm)2+k的形式,其中m,k为常数,则m+k=_12(3分)现在有一种运算:ab=n,可以使:(a+c)b=n+c,a(b+c)=n2c,如果11=2,那么20122012=_13(3分)(200
4、8金华)如果x+y=4,xy=8,那么代数式x2y2的值是_14(3分)若(xm)2=x2+x+a,则m=_15(3分)若x3=8a9b6,则x_16(3分)计算:(3mn+p)(3m+np)=_17(3分)(2011遂宁)阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2y22y1=x2(y2+2y+1)=x2(y+1)2=(x+y+1)(xy1)试用上述方法分解因式a2+2ab+ac+bc+b2=_18(3分)观察,分析,猜想:1&
5、#215;2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;4×5×6×7+1=292;n(n+1)(n+2)(n+3)+1=_(n为整数)三、解答题(共46分)19(15分)通过对代数式的适当变形,求出代数式的值(1)若x+y=4,xy=3,求(xy)2,x2y+xy2的值(2)若x=,y=,求x2xy+y2的值(3)若x25x=3,求(x1)(2x1)(x+1)2+1的值(4)若m2+m1=0,求m3+2m2+2014的值20(5分)已知2a=5,2b=
6、3,求2a+b+3的值21(5分)利用因式分解计算:122+3242+5262+9921002+101222(6分)先化简,再求值:x(x2)(x+1)(x1),其中x=1023(6分)利用分解因式说明:(n+5)2(n1)2能被12整除24(9分)(2009安徽)观察下列等式:1×=1,2×=2,3×=3,(1)猜想并写出第n个等式;(2)证明你写出的等式的正确性华师大版八年级上册第12章 整式的除法2014年单元测试卷参考答案与试题解析一、选择题(每小题3分,共30分)1(3分)(2012苏州)若3×9m×27m=321,则m的值为()A3
7、B4C5D6考点:幂的乘方与积的乘方;同底数幂的乘法菁优网版权所有分析:先逆用幂的乘方的性质转化为以3为底数的幂相乘,再利用同底数幂的乘法的性质计算后根据指数相等列出方程求解即可解答:解:39m27m=332m33m=31+2m+3m=321,1+2m+3m=21,解得m=4故选B点评:本题考查了幂的乘方的性质的逆用,同底数幂的乘法,转化为同底数幂的乘法,理清指数的变化是解题的关键2(3分)(1998宁波)要使多项式(x2+px+2)(xq)不含关于x的二次项,则p与q的关系是()A相等B互为相反数C互为倒数D乘积为1考点:多项式乘多项式菁优网版权所有分析:把式子展开,找到所有x2项的所有系数
8、,令其为0,可求出p、q的关系解答:解:(x2+px+2)(xq)=x3qx2+px2pqx+2x2q=2q+(2pq)x+(pq)x2+x3又结果中不含x2的项,pq=0,解得p=q故选A点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为03(3分)若|x+y+1|与(xy2)2互为相反数,则(3xy)3的值为()A1B9C9D27考点:解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方菁优网版权所有专题:方程思想分析:先根据相反数的定义列出等式|x+y+1|+(xy2)2=0,再由非负数的性质求得x、y的值,然后将其代入所求的代数式(3
9、xy)3并求值解答:解:|x+y+1|与(xy2)2互为相反数,|x+y+1|+(xy2)2=0,解得,(3xy)3=(3×+)3=27故选D点评:本题主要考查了二元一次方程组的解法、非负数的性质绝对值、非负数的性质偶次方解题的关键是利用互为相反数的性质列出方程,再由非负数是性质列出二元一次方程组4(3分)若x2kxy+9y2是一个两数和(差)的平方公式,则k的值为()A3B6C±6D±81考点:完全平方式菁优网版权所有专题:计算题分析:利用完全平方公式的结构判断即可确定出k的值解答:解:x2kxy+9y2是一个两数和(差)的平方公式,k=±6,则k=&
10、#177;6故选C点评:此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键5(3分)已知多项式(17x23x+4)(ax2+bx+c)能被5x整除,且商式为2x+1,则ab+c=()A12B13C14D19考点:整式的除法菁优网版权所有专题:计算题分析:根据商乘以除数等于被除数列出关系式,整理后利用多项式相等的条件确定出a,b,c的值,即可求出ab+c的值解答:解:依题意,得(17x23x+4)(ax2+bx+c)=5x(2x+1),(17a)x2+(3b)x+(4c)=10x2+5x,17a=10,3b=5,4c=0,解得:a=7,b=8,c=4,则ab+c=7+8+4=19故选D点评
11、:此题考查了整式的除法,熟练掌握运算法则是解本题的关键6(3分)(2011南昌)下列运算正确的是()Aa+b=abBa2a3=a5Ca2+2abb2=(ab)2D3a2a=1考点:同底数幂的乘法;合并同类项菁优网版权所有专题:存在型分析:分别根据合并同类项、同底数幂的乘法及完全平方公式对各选项进行解答即可解答:解:A、a与b不是同类项,不能合并,故本选项错误;B、由同底数幂的乘法法则可知,a2a3=a5,故本选项正确;C、a2+2abb2不符合完全平方公式,故本选项错误;D、由合并同类项的法则可知,3a2a=a,故本选项错误故选B点评:本题考查的是合并同类项、同底数幂的乘法及完全平方公式,熟知
12、以上知识是解答此题的关键7(3分)若a4+b4+a2b2=5,ab=2,则a2+b2的值是()A2B3C±3D2考点:因式分解-运用公式法菁优网版权所有分析:利用完全平方公式分解因式进而求出即可解答:解:由题意得(a2+b2)2=5+a2b2,因为ab=2,所以a2+b2=3故选:B点评:此题主要考查了公式法分解因式,熟练利用完全平方公式是解题关键8(3分)下列因式分解中,正确的是()Ax2y2z2=x2(y+z)(yz)Bx2y+4xy5y=y(x2+4x+5)C(x+2)29=(x+5)(x1)D912a+4a2=(32a)2考点:提公因式法与公式法的综合运用菁优网版权所有分析:
13、根据分解因式就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解解答:解:A、用平方差公式,应为x2y2z2=(xy+z)(xyz),故本选项错误;B、提公因式法,符号不对,应为x2y+4xy5y=y(x24x+5),故本选项错误;C、用平方差公式,(x+2)29=(x+2+3)(x+23)=(x+5)(x1),正确;D、完全平方公式,不用提取负号,应为912a+4a2=(32a)2,故本选项错误故选C点评:本题考查了提公因式法,公式法分解因式,熟练掌握公式的结构特征是解题的关键9(3分)设一个正方形的边长为1cm,若边长增加2cm,则新正方形的面积增加了()A6cm2B5cm2C8c
14、m2D7cm2考点:完全平方公式菁优网版权所有专题:计算题分析:根据题意列出算式,计算即可得到结果解答:解:根据题意得:(1+2)212=91=8,即新正方形的面积增加了8cm2,故选C点评:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键10(3分)(2009内江)在边长为a的正方形中挖去一个边长为b的小正方形(ab)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A(a+b)2=a2+2ab+b2B(ab)2=a22ab+b2Ca2b2=(a+b)(ab)D(a+2b)(ab)=a2+ab2b2考点:平方差公式的几何背景菁优网版权所有
15、分析:第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2b2;第二个图形阴影部分是一个长是(a+b),宽是(ab)的长方形,面积是(a+b)(ab);这两个图形的阴影部分的面积相等解答:解:图甲中阴影部分的面积=a2b2,图乙中阴影部分的面积=(a+b)(ab),而两个图形中阴影部分的面积相等,阴影部分的面积=a2b2=(a+b)(ab)故选:C点评:此题主要考查了乘法的平方差公式即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式二、填空题(每小题3分,共24分)11(3分)(2009北京)若把代数式x22x3化为(xm)
16、2+k的形式,其中m,k为常数,则m+k=3考点:完全平方公式菁优网版权所有专题:配方法分析:根据完全平方公式的结构,按照要求x22x3=x22x+14=(x1)24,可知m=1k=4,则m+k=3解答:解:x22x3=x22x+14=(x1)24,m=1,k=4,m+k=3故答案为:3点评:本题主要考查完全平方公式的变形,熟记公式结构是解题的关键完全平方公式:(a±b)2=a2±2ab+b212(3分)现在有一种运算:ab=n,可以使:(a+c)b=n+c,a(b+c)=n2c,如果11=2,那么20122012=2009考点:整式的除法菁优网版权所有专题:新定义分析:先
17、设出20122012=m,再根据新运算进行计算,求出m的值即可解答:解:设20122012=m,由已知得,(1+2011)1=2+2011,2012(20122011)=m+2×2011,则2+2011=m+2×2011,解得,m=20122012=(2+2011)2011×2=2009故答案为:2009点评:本题主要考查了有理数的混合运算,在解题时要注意按照两者的转换公式进行计算即可13(3分)(2008金华)如果x+y=4,xy=8,那么代数式x2y2的值是32考点:平方差公式菁优网版权所有专题:计算题分析:由题目可发现x2y2=(x+y)(xy),然后用整体
18、代入法进行求解解答:解:x+y=4,xy=8,x2y2=(x+y)(xy)=(4)×8=32故答案为:32点评:本题考查了平方差公式,由题设中代数式x+y,xy的值,将代数式适当变形,然后利用“整体代入法”求代数式的值14(3分)若(xm)2=x2+x+a,则m=考点:完全平方公式菁优网版权所有专题:计算题分析:已知等式左边利用完全平方公式展开,利用多项式相等的条件确定出m的值即可解答:解:(xm)2=x2+x+a=x22mx+m2,2m=1,a=m2,则m=,a=故答案为:点评:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键15(3分)若x3=8a9b6,则x=2a3b
19、2考点:幂的乘方与积的乘方菁优网版权所有分析:根据幂的乘方与积的乘方法则进行解答即可解答:解:x3=8a9b6,x3=(2a3b2)3,x=2a3b2故答案为:=2a3b2点评:本题考查的是幂的乘方与积的乘方法则,先根据题意得出x3=(2a3b2)3是解答此题的关键16(3分)计算:(3mn+p)(3m+np)=9m2n2+2npp2考点:平方差公式;完全平方公式菁优网版权所有专题:计算题分析:原式利用平方差公式化简,再利用完全平方公式计算即可得到结果解答:解:原式=9m2(np)2=9m2n2+2npp2故答案为:9m2n2+2npp2点评:此题考查了平方差公式,以及完全平方公式,熟练掌握公
20、式是解本题的关键17(3分)(2011遂宁)阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2y22y1=x2(y2+2y+1)=x2(y+1)2=(x+y+1)(xy1)试用上述方法分解因式a2+2ab+ac+bc+b2=(a+b)(a+b+c)考点:因式分解-分组分解法菁优网版权所有专题:压轴题;阅读型分析:首先进行合理分组,然后运用提公因式法和公式法进行因式分解解答:解:原式=(a2+2ab+b2)+(ac+bc)=(a+b)2+
21、c(a+b)=(a+b)(a+b+c)故答案为(a+b)(a+b+c)点评:此题考查了因式分解法,要能够熟练运用分组分解法、提公因式法和完全平方公式18(3分)观察,分析,猜想:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;4×5×6×7+1=292;n(n+1)(n+2)(n+3)+1=n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2(n为整数)考点:规律型:数字的变化类菁优网版权所有分析:观察下列各式:1×
22、;2×3×4+1=52=(12+3×1+1)2;2×3×4×5+1=112=(22+3×2+1)2;3×4×5×6+1=192=(32+3×3+1)2,4×5×6×7+1=292=(42+3×4+1)2,得出规律:n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2,(n1)解答:解:1×2×3×4+1=(1×4)+12=52,2×3×4×5+1=(2
23、5;5)+12=112,3×4×5×6+1=(3×6)+12=192,4×5×6×7+1=(4×7)+12=292,n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2故答案为:n(n+1)(n+2)(n+3)+1=(n2+3×n+1)2点评:此题考查了数字的变化规律,解答本题的关键是发现规律为n(n+1)(n+2)(n+3)+1=(n2+3n+1)2(n1),一定要通过观察,分析、归纳并发现其中的规律三、解答题(共46分)19(15分)通过对代数式的适当变形,求出代数式的值(1)若x+
24、y=4,xy=3,求(xy)2,x2y+xy2的值(2)若x=,y=,求x2xy+y2的值(3)若x25x=3,求(x1)(2x1)(x+1)2+1的值(4)若m2+m1=0,求m3+2m2+2014的值考点:整式的混合运算化简求值菁优网版权所有分析:(1)将(xy)2通过配方法转化成(x+y)2,x2y+xy2因式分解即可;(2)利用配方法转化成=(x+y)23xy即可;(3)根据整式的乘法把式子展开即可;(4)先把m2+m1=0,变形为m2=1m把m3+2m2+2014变形为m2(m+2)+2014=(1m)(m+2)+2014即可;解答:解:(1)(xy)2=x22xy+y2=x2+2x
25、y+y24xy=(x+y)24xy424×3=4,x2y+xy2=xy(x+y)=3×4=12,(2)x2xy+y2=(x+y)23xy=(+)23(+)()=(2)23×2=286=22(3)(x1)(2x1)(x+1)2+1=2x23x+1(x2+2x+1)+1=x25x+1=3+1=44)由m2+m1=0,得m2=1m把m3+2m2+2014=m2(m+2)+2014=(1m)(m+2)+2014=m1m+2+2014点评:此题考查了学生的应用能力,解题时要注意配方法的步骤注意在变形的过程中不要改变式子的值20(5分)已知2a=5,2b=3,求2a+b+3的值考点:同底数幂的乘法菁优网版权所有分析:直接利用同底数幂的乘法运算法则求出即可解答:解:2a+b+3=2a2b23=5×3×8=120点评:此题主要考查了同底数幂的乘法运算,熟练掌握运算法则是解题关键21(5分)利用因式分解计算:122+3242+5262+9921002+1012考点:因式分解的应用菁优网版权所有分析:先把原式变形为1+3222+5242+10121002,再因式分解得1+(3+2)+(5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惠州消防知识培训班课件地址
- 情绪世界课件
- 情感升华课件
- 销售管理工作方案
- 恶性心律失常的识别课件
- “绿化环境,播种绿色”植树节活动方案
- 老年趣味运动会活动策划方案
- 孤儿学校初中语文随班就读的工作方案
- 护士理论考试题及答案
- 扬州电动车考试试题及答案
- 【《惠东农商银行个人信贷业务发展现状及存在的问题和策略分析》15000字】
- 光伏项目开发培训课件
- 职业年金政策讲解
- 智联猎头企业薪酬调研白皮书-2025年年中盘点
- 基孔肯雅热、登革热等重点虫媒传染病防控技术试题
- 消防设施操作员(监控方向)中级模拟考试题及答案
- 2025年事业单位教师考试公共基础知识试题(含答案)
- 2025年可靠性工程师MTBF计算强化练习
- 2025秋季学期中小学学校学生校服采购工作方案
- 乳房肿块鉴别诊断
- 普速铁路信号维护规则业务管理
评论
0/150
提交评论