数学建模作业(2)_第1页
数学建模作业(2)_第2页
数学建模作业(2)_第3页
数学建模作业(2)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、习题一在节存储模型中的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量。证明在不允许缺货模型和允许缺货模型中结果都与原来一样。、不允许缺货的存储模型问题分析 若生产周期短、产量少,会使存储费用小,准备费用大,货物价格不变;而周期长、产量多,会使存储费大,准备费小,货物价格不变。所以必然存在一个最佳周期,使总费用最小。显然,应建立一个优化模型。模型假设为了处理的方便,考虑连续模型,即设生产周期T和产量Q为连续量。根据问题性质作如下假设:(1) 产品每天的需求量为常数 r。(2) 每次生产费用为ci,每天每件产品存储费为C2,购买每件货物所需费用为C3.(3) 生产能力为无限大(相对

2、于需求量),当存储量降为零时,Q件产品立即生产出来 供给需求,即不允许缺货。模型建立将存储量表示为时间t的函数q (t),t=0生产Q件,存储量q(O)=Q,q(t)以需求速率r递减,直到q(T)=O,如图,显然有:Q=rT图(1)不允许缺货模型的存储量q (t)一个周期内的存储费是C2/ q(t)dt,其中积分恰好等于图中三角形面积QT/2,因为一个周期的准备费是ci,购买每件货物的费用为C3,得到一个周期的总费用为:2C=ci+C2QT/2+r Tc 3=Ci+C2 r T /2+ r T c3则每天的平均费用是C(T)=ci/T+r c 3+C2 r T/2上式为这个优化模型的目标函数。

3、模型求解求T使上式的C最小。容易得到T=V2ci/ (C2r )贝9 Q=V2cir/c 2二、允许缺货的存储模型(1) 模型假设产品每天的需求量为常数r。(2) 每次生产费用为ci,每天每件产品存储费为C2,购买每件货物所需费用为C3.(3) 生产能力为无限大(相对于需求量),允许缺货,每天每件损失费为C4,但缺货数量需在下次生产(或订货)时补足。,模型建立因存储量不足造成缺货时,可以认为存储量函数q(t)为负值,如图所示,周期仍记为T,Q是每周期初的存储量,当 t=Ti时q(t)=O,于是有Q=r T i在Ti到T这段时间内需求率r不变,q(t)按原斜率继续下降。由于规定缺货量需补足,所

4、以在t=T时数量为R的产品立即到达,使下周期初的存储量恢复为Q.2所以 C=c 1+C2QT/2+ r Tc 3+C4r(T-T 1) /2将模型的目标函数-每天的平均费用-记作T和Q的二元函数C(T,Q)=c i/T+c 2&/(2rT)+ +r c3+a(Rt-Q) 2/(2Tr)模型求解利用微分法求T和Q使C(T,Q)最小,令dC/dT=O ,dC /dQ =0,可得T =V2ci(c 2+c4)/(rc 2C4) , Q2ci rc 4/(c 2(C2+C3)由以上两个模型可以看出在不允许缺货模型和缺货模型中结果都与原来一样存储模型问题:建立不允许缺货存储模型。设生产速率为常数

5、k,销售速率为常数r,k > r,在每个生产周期T内,开始的一段时间(Ov t vTo) 边生产一边销售,后来的一段时间(Tov t v T )只销售不生产.画出储存量q(t)的图形,设每次生产准备费为C1,单位时间每件产品储存费为C2,以总费用最小为目标确定最优生产周期。讨论K>> r和Kr的情况。问题分析:在t< T0时间内k>r有储存量以k r速率增加,在T°v t v T时间内,储存量以 r速率递减,而一个周期的总费用为C(t)与生产周期,产量与需求量,生产准备费,储存费之间的关系,从而建立数学模型。可根据数学最值定理求出最优周期。模型假设:为处

6、理方便考虑连续模型,即生产周期T和生产量Q都是连续量,故作出如下假设1. 生产速率为常数k,销售速率为常数r,k > r。2. 每次生产准备费为C1,单位时间每件产品储存费为C2。3. 开始的一段时间(0v t v T0) 一边生产一边销售,后来的一段时间(T°v t v T ) 只销售不生产4. 不允许缺货。模型建立:将存储量表示为时间T的函数q(t),在0 v t v To, q(t)以的速率增加;在 Tov tvT时间内,q(t)以r的速率递减,直到 q(t) = 0,如图所示,显然有-(k r ) t0v t v Toq(t)=0T0 T t则一个周期内的储存费为C2/

7、 o(q(t)dt一个周期的总费用为 C (t) = ci+ C2( k r ) To T则平均费用为 g(t)=C(t)/T= c 1 /T+ c 2 ( k r ) To/T + c 2 ( k r ) To ( T To) /T 由于(k r ) To=r (T To)故 g(t)= c 1 /T+c 2( k r ) rT/2k模型求解:使平均费用最小的最优周期为T=V2cik/c 2r (k-r )模型分析:当k>> r时,T=V2ci/c 2r相当于不考虑生产的情况。当 Q r时,T* a,因为产量被销售量抵消,无法形成储存量。model:mi n=100*x1+40*x5+40*x6;x1+x6>4;x2+x4>6;x3+x5>5;x1+x5>8;x1+x5-x4>8;x2+x3=x1;endGlobal optimal soluti on found.Objective value:In

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论