34整式的加减(第1课时)课件(华师大版七年级上)_第1页
34整式的加减(第1课时)课件(华师大版七年级上)_第2页
34整式的加减(第1课时)课件(华师大版七年级上)_第3页
34整式的加减(第1课时)课件(华师大版七年级上)_第4页
34整式的加减(第1课时)课件(华师大版七年级上)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.4整式的加减第一课时第一课时 同类项同类项讲解点讲解点1 1:同类项的概念:同类项的概念 精讲:精讲: 所含所含字母相同字母相同,并且,并且相同字母的指数相同字母的指数也分别相同也分别相同的项叫做的项叫做同类项同类项 典例典例 1 1、下列各组式子中是同类项的有(、下列各组式子中是同类项的有( )组)组 xxnmnmxyxybaabxyzabcxyxy33)7(32)6(21)5(33)4(10010) 3(571)2(52) 1 (222222233与;与;与与;与;与;与(A A)4 4 (B B)5 5 (C C)6 6 (D D)3 3 A A评析:利用同类项的概念解题,注意评析:

2、利用同类项的概念解题,注意“两个相同两个相同” ” ,即:即:“字母相同、相同字母的指数相同字母相同、相同字母的指数相同”;“两个两个无关无关”,即:,即:“与系数无关、与字母的顺序无关与系数无关、与字母的顺序无关”。 典例典例 2 2、若、若 是同类项,求是同类项,求m m、n n的值的值 2113342babanm与解:由同类项的定义知:解:由同类项的定义知:m+1=2m+1=2且且n+1=3n+1=3解得解得 m=1m=1,n=2n=2。答:答:m=1m=1,n=2n=2。评析:利用同类项的定义解题,根据评析:利用同类项的定义解题,根据“两个相同两个相同” ” ,先建立方程(或方程组),

3、再解方程。切记同类项先建立方程(或方程组),再解方程。切记同类项与系数无关、与字母的顺序无关与系数无关、与字母的顺序无关。2 2、若、若2a2a2m-52m-5b b4 4与与mabmab3n-23n-2的和是关于的和是关于a a、b b的单项式,则的单项式,则( )A.m=2,n=3 B.m=3,n=2 C.m=-3,n=2 D.mA.m=2,n=3 B.m=3,n=2 C.m=-3,n=2 D.m=3,n=-2=3,n=-2 典例典例 B B注:此题的算法,与前面的注:此题的算法,与前面的1 1题类似。题类似。 典例典例 若若 是同类项,是同类项,求求 的值。的值。 nmmyxyx512与

4、解:根据同类项定义,有解:根据同类项定义,有2m-1=52m-1=5且且m+nm+n=1=1解得解得 m=3m=3,n=-2n=-2。则则(mn+5)(mn+5)20082008=3=3(-2)+5(-2)+520082008=(-1)=(-1)20082008=1=1答:答:(mn+5)(mn+5)20082008=1=1。评析:此题要求含评析:此题要求含m m、n n的代数式的值,但题目中没的代数式的值,但题目中没有给出有给出m m、n n的值。需要从同类项的概念出发,先求的值。需要从同类项的概念出发,先求出出m m、n n的值,从而求出代数式的值。同时注意乘方的值,从而求出代数式的值。同

5、时注意乘方性质的应用。性质的应用。2008)5(mn 典例典例 若若 是同类项,则是同类项,则m=m= 。 22|2) 1(abbamm与评析:此题产生错误的原因是求出评析:此题产生错误的原因是求出m m的值后,没有检的值后,没有检验相应的系数是否为验相应的系数是否为0 0,故多出一个解。注意:,故多出一个解。注意:如果如果一个单项式的系数为一个单项式的系数为0 0,则此单项式变为,则此单项式变为0 0,也就是,也就是变为常数,不能与后一个单项式构成同类项。特别变为常数,不能与后一个单项式构成同类项。特别要注意,当一个单项式的系数含有字母时,求出字要注意,当一个单项式的系数含有字母时,求出字母

6、的取值后,一定检验一下它的系数是否为母的取值后,一定检验一下它的系数是否为0 0。若系。若系数为数为0 0,则字母的取值无意义,必须舍去,只能取系,则字母的取值无意义,必须舍去,只能取系数不为数不为0 0的那个值。的那个值。错解:错解: 是同类项,是同类项,|m|=1,|m|=1,即即m=m=1 1 22|2) 1(abbamm与正解:同上,求得正解:同上,求得m=m=1 1,而当,而当m=-1m=-1时,时,m+1=0m+1=0,此时此时 是一个常数,它与是一个常数,它与 不是同类项,故只能取不是同类项,故只能取m=1m=1。0) 1(2|bamm22ab 典例典例 已知单项式已知单项式 的

7、差仍然是单的差仍然是单项式,求项式,求m mn n的值。的值。 5312632yxyxnm与解:因为解:因为2x2x6 6y y2m+12m+1与与-3x-3x3n3ny y5 5的差仍是单项式,的差仍是单项式, 所以所以2x2x6 6y y2m+12m+1与与-3x-3x3n3ny y5 5是同类项是同类项 所以所以3n=63n=6,且,且2m+1=52m+1=5 所以所以m=2m=2,n=2n=2,所以,所以mnmn=2=22 2=4=4评析:因为两个单项式的差仍是单项式,所以这两评析:因为两个单项式的差仍是单项式,所以这两个单项式一定是同类项,再根据同类项的定义求出个单项式一定是同类项,

8、再根据同类项的定义求出m m、n n的值,最后求的值,最后求mnmn的值。此类题目要能从题目中隐含的值。此类题目要能从题目中隐含条件发现两个单项式是同类项,再根据同类项的定条件发现两个单项式是同类项,再根据同类项的定义求出字母的值。义求出字母的值。若若mxmxp py yq q与与-3xy-3xy2p+12p+1的差为的差为 , ,求求pq(p+qpq(p+q) )的值。的值。解:解: mx mxp py yq q与与-3xy-3xy2p+12p+1必为同类项必为同类项根据同类项的定义有根据同类项的定义有 p=1p=1,q=2p+1=3q=2p+1=3。 pq(p+qpq(p+q)=1)=13(1+3)=12 3(1+3)=12 练习练习 qpyx23 mx mxp py

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论