


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、分式方程与二次根式方程知识要点 分式方程、二次根式的概念、解法思路、解法、增根大纲要求 了解分式方程、二次根式方程的概念。掌握把简单的分式方程、二次根式方程转化为一元一次方程、一元二次方程的一般方法,会用换元法解方程,会检验。内容分析 1分式方程的解法 (1)去分母法 用去分母法解分式方程的一般步骤是: (i)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (ii)解这个整式方程; (iii)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去. 在上述步骤中,去分母是关键,验根只需代入最简公分母. (2)换元法 用换元
2、法解分式方程,也就是把适当的分式换成新的未知数,求出新的未知数后求出原来的未知数 2二次根式方程的解法 (1)两边平方法 用两边平方法解无理方程的般步骤是: (i)方程两边都平方,去掉根号,化成有理方程; (ii)解这个有理方程; (iii)把有理方程的根代入原方程进行检验,如果适合,就是原方程的根,如果不适合,就是增根,必须舍去 在上述步骤中,两边平方是关键,验根必须代入原方程进行 (2)换元法 用换元法解无理方程,就是把适当的根号下台有未知数的式子换成新的未知数,求出新的未知数后再求原来的未知数考查重点与常见题型考查换元法解分式方程和二次根式方程,有一部分只考查换元的能力,常出现在选择题中
3、另一部分习题考查完整的解题能力,习题出现在中档解答题中。考题类型1(1)用换元法解分式方程3时,设y,原方程变形为()(A)y23y10 (B)y23y10 (C)y23y10 (D)y2y302用换元法解方程x28x23,若设y,则原方程可化为()(A)y2y120 (B)y2y230 (C)y2y120 (D)y2y34=03若解分式方程产生增根,则m的值是( ) (A)1或2 (B)1或2(C)1或2 (D)1或24解方程1时,需将方程两边都乘以同一个整式(各分母的最简公分母),约去分母,所乘的这个整式为()(A)x1(B)x(x1) (C)x (D)x15先阅读下面解方程x2的过程,然
4、后填空. 解:(第一步)将方程整理为x20;(第二步)设y,原方程可化为y2y0;(第三步)解这个方程的 y10,y21(第四步)当y0时,0;解得 x2,当y1时,1,方程无解;(第五步)所以x2是原方程的根以上解题过程中,第二步用的方法是,第四步中,能够判定方程1无解原根据是。上述解题过程不完整,缺少的一步是。 考点训练:1 给出下列六个方程:1)x22x202)1x3)0 4)205)06)1具中有实数解的方程有()(A)0个(B)1个(C)2个(D)多于2个2 方程1的解是( )(A)1(B)2或1(C)2或3(D)33 当分母解x 的方程时产生增根,则m的值等于( )(A)2(B)1
5、(C)1.(D)24 方程0的解是。5 能使(x5)0成立的x是。6 关于x的方程2x15是根式方程,则m的取值范围是。7 解下列方程:(1)(2) (3)x2(x)10解题指导:1 解下列方程:(1)x (2) (3)x22x2 (4)3独立训练1 方程0的解是_. 方程x的解是_,方程的解是_ .2设y _时,分式方程()25()60可转化为_.3用换元法解方程2x3x2410可设y _.从而把方程化为_.4下列方程有实数解的是()(A)54 (B)0 (C)x22x40 (D)5解下列方程.(1) =(2)1(3)5(ab0)(4)2 (5) 2x24x310 (6)4(x2)5(x)140(7)3x215x22 (8) 6(1)若关于x的方程- = +1产生增根,求m的值。(2)m为何值时,关于x的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件开发流程面临的挑战试题及答案
- 企业文化与风险管理考题及答案
- 制定职业晋升的长期规划计划
- 2024年甘肃陇南事业单位招聘笔试真题
- VB最佳编程习惯与技巧试题及答案
- 2024年东莞市市场监督管理局招聘笔试真题
- 移动设备安全性测试试题及答案
- 软件工程项目管理中的挑战试题及答案
- 未来市场竞争中的风险识别试题及答案
- 自然语言处理技术试题及答案
- 137案例黑色三分钟生死一瞬间事故案例文字版
- 高中英语外研版 单词表 必修1
- 临床流行病学与循证医学-临床实践指南的制定与评价
- 【魔镜洞察】2024药食同源保健品滋补品行业分析报告
- 2023届高考地理一轮复习跟踪训练-石油资源与国家安全
- 14.有趣的光影(课件)-美术六年级下册
- 中央2024年商务部中国国际电子商务中心招聘笔试历年典型考题及考点附答案解析
- 2024年四川省南充市名校中考物理模拟试卷
- JBT 14682-2024 多关节机器人用伺服电动机技术规范(正式版)
- 改进工作作风自查报告(11篇)
- 24春国家开放大学《机械CADCAM》形考任务1-3参考答案
评论
0/150
提交评论